C321: Nielsen's Generalized Polylogarithm

Author(s): K.S. Kölbig Library: MATHLIB
Submitter: Submitted: 12.09.1985
Language: Fortran Revised: 15.03.1993

Function subprograms CGPLG and WGPLG calculate the complex-valued generalized polylogarithm function

displaymath110

for real arguments x and integer n and m satisfying tex2html_wrap_inline118 ; i.e., one of the functions tex2html_wrap_inline120 , tex2html_wrap_inline122 , tex2html_wrap_inline124 , tex2html_wrap_inline126 , tex2html_wrap_inline128 , tex2html_wrap_inline130 , tex2html_wrap_inline132 , tex2html_wrap_inline134 , tex2html_wrap_inline136 , tex2html_wrap_inline138 . If tex2html_wrap_inline140 , tex2html_wrap_inline142 is real, and the imaginary part is set equal to zero.

The double-precision version WGPLG is available only on computers which support a COMPLEX*16 Fortran data type.

Structure:

FUNCTION subprograms
User Entry Names: CGPLG, WGPLG
Files Referenced: Unit 6
External References: MTLMTR, ABEND

Usage:

In any arithmetic expression,

CGPLG(N,M,X) or WGPLG(N,M,X) has the value tex2html_wrap_inline144 ,

where CGPLG is of type COMPLEX, WGPLG is of type COMPLEX*16, X is of type REAL for CGPLG and of type DOUBLE PRECISION for WGPLG, and where N and M are of type INTEGER.

Method:

The method is described in Ref. 1. Note that the imaginary part of the function defined as tex2html_wrap_inline146 in Ref. 1 has the opposite sign to the imaginary part of the function defined by (*). See Ref. 2.

Accuracy:

CGPLG (except on CDC and Cray computers) has full single-precision accuracy. For most values of the argument X, WGPLG (and CGPLG on CDC and Cray computers) has an accuracy of approximately two significant digits less than the machine precision. The loss of accuracy is greater when X is very close to 1.

Error handling:

Error C321.1: tex2html_wrap_inline148 or tex2html_wrap_inline150 or tex2html_wrap_inline152 . The function value is set equal to zero, and a message is written on Unit 6, unless subroutine MTLSET (N002) has been called.

References:

  1. K.S. Kölbig, J.A. Mignaco and E. Remiddi, On Nielsen's generalized polylogarithms and their numerical calculation, BIT 10 (1970) 38-71.
  2. K.S. Kölbig, Nielsen's generalized polylogarithms, SIAM J. Math. Anal. 17 (1986) 1232-1258.
tex2html_wrap_inline154

Michel Goossens Tue Jun 4 21:46:09 METDST 1996