Space-time Noncommutativity and

 quantised evolutionT R Govindarajan, IMSC, Chennai, India
trg@imsc.res.in

BRATISLAVA, June 2007

noncommutative spacetime \& unitary ...

\diamond We will start with $1+1$ dimensional theory. And look at the spacetime commutators of the form:

$$
\left[\hat{x}_{\mu}, \hat{x}_{\nu}\right]=i \theta \epsilon_{\mu \nu} \mathcal{I}
$$

noncommutative spacetime \& unitary

\diamond We will start with $1+1$ dimensional theory. And look at the spacetime commutators of the form:

$$
\left[\hat{x}_{\mu}, \hat{x}_{\nu}\right]=i \theta \epsilon_{\mu \nu} \mathcal{I}
$$

\diamond Its usually remarked that this leads to non unitary quantum theory. We believe this is due to incorrect appreciation of the role of "Time".

noncommutative spacetime \& unitary

\diamond We will start with $1+1$ dimensional theory. And look at the spacetime commutators of the form:

$$
\left[\hat{x}_{\mu}, \hat{x}_{\nu}\right]=i \theta \epsilon_{\mu \nu} \mathcal{I}
$$

\diamond Its usually remarked that this leads to non unitary quantum theory. We believe this is due to incorrect appreciation of the role of "Time".
\diamond But the correct statement is if a group of transformations cannot be implemented on the algebra $\mathcal{A}_{\theta}\left(\mathcal{R}^{2}\right)$ generated by \hat{x}_{μ} with our relation then it will not be a symmetry Even this should be improved - will come back later

noncommutative spacetime ...

\diamond We readily see that spacetime translations are automorphisms of $\mathcal{A}_{\theta}\left(\mathcal{R}^{2}\right)$: With $\mathcal{U}(\vec{a}) \hat{x}_{\mu}=\hat{x}_{\mu}+a_{\mu}$ we see that,

$$
\left[\mathcal{U}(\vec{a}) \hat{x}_{\mu}, \mathcal{U}(\vec{a}) \hat{x}_{\nu}\right]=i \theta \varepsilon_{\mu \nu} .
$$

noncommutative spacetime ...

\diamond We readily see that spacetime translations are automorphisms of $\mathcal{A}_{\theta}\left(\mathcal{R}^{2}\right)$: With $\mathcal{U}(\vec{a}) \hat{x}_{\mu}=\hat{x}_{\mu}+a_{\mu}$ we see that,

$$
\left[\mathcal{U}(\vec{a}) \hat{x}_{\mu}, \mathcal{U}(\vec{a}) \hat{x}_{\nu}\right]=i \theta \varepsilon_{\mu \nu} .
$$

\diamond The time-translation automorphism is:

$$
U(\tau):=\mathcal{U}((\tau, 0))
$$

noncommutative spacetime ...

\diamond We readily see that spacetime translations are automorphisms of $\mathcal{A}_{\theta}\left(\mathcal{R}^{2}\right)$: With $\mathcal{U}(\vec{a}) \hat{x}_{\mu}=\hat{x}_{\mu}+a_{\mu}$ we see that,

$$
\left[\mathcal{U}(\vec{a}) \hat{x}_{\mu}, \mathcal{U}(\vec{a}) \hat{x}_{\nu}\right]=i \theta \varepsilon_{\mu \nu} .
$$

\diamond The time-translation automorphism is:

$$
U(\tau):=\mathcal{U}((\tau, 0))
$$

\diamond Without the time-translation automorphism, we cannot formulate conventional quantum physics.

noncommutative spacetime..

\diamond The infinitesimal generators of $\mathcal{U}(\vec{a})$ can be obtained from

$$
\mathcal{U}(\vec{a})=e^{-i a_{0} \hat{P}_{0}+i a_{1} \hat{P}_{1}}
$$

noncommutative spacetime..

\diamond The infinitesimal generators of $\mathcal{U}(\vec{a})$ can be obtained from

$$
\mathcal{U}(\vec{a})=e^{-i a_{0} \hat{P}_{0}+i a_{1} \hat{P}_{1}} .
$$

\diamond Then we have

$$
\hat{P}_{0}=-\frac{1}{\theta} \operatorname{ad} \hat{x}_{1},
$$

$$
\operatorname{ad} \hat{x}_{\mu} \hat{a} \equiv\left[\hat{x}_{\mu}, \hat{a}\right], \hat{a} \in \mathcal{A}_{\theta}\left(\mathbb{R}^{2}\right) .
$$

noncommutative spacetime..

\diamond The infinitesimal generators of $\mathcal{U}(\vec{a})$ can be obtained from

$$
\left.\mathcal{U}(\vec{a})=e^{-i a_{0} \hat{P}_{0}+i a_{1} \hat{P}_{1}}\right\rangle
$$

\diamond Then we have

$$
\begin{gathered}
\hat{P}_{0}=-\frac{1}{\theta} \operatorname{ad} \hat{x}_{1}, \hat{P}_{1}=-\frac{1}{\theta} \operatorname{ad} \hat{x}_{0} \\
\operatorname{ad} \hat{x}_{\mu} \hat{a} \equiv\left[\hat{x}_{\mu}, \hat{a}\right], \hat{a} \in \mathcal{A}_{\theta}\left(\mathbb{R}^{2}\right) .
\end{gathered}
$$

noncommutative spacetime..

\diamond It is a special feature of two dimensions that the $(2+1)$ connected Lorentz group is an inner automorphism group

noncommutative spacetime..

\diamond It is a special feature of two dimensions that the $(2+1)$ connected Lorentz group is an inner automorphism group
\diamond Its generators are $\operatorname{ad} \hat{J}_{3}$ and $\operatorname{ad} \hat{K}_{a}$,

noncommutative spacetime..

\diamond It is a special feature of two dimensions that the $(2+1)$ connected Lorentz group is an inner automorphism group
\diamond Its generators are ad \hat{J}_{3} and $\operatorname{ad} \hat{K}_{a}$,

$$
\hat{J}_{3}=\frac{1}{4 \theta}\left(\hat{x}_{0}^{2}+\hat{x}_{1}^{2}\right)
$$

noncommutative spacetime..

\diamond It is a special feature of two dimensions that the $(2+1)$ connected Lorentz group is an inner automorphism group
\diamond Its generators are ad \hat{J}_{3} and $\operatorname{ad} \hat{K}_{a}$,
\diamond

$$
\begin{array}{r}
J_{3}=\frac{1}{4 \theta}\left(\hat{x}_{0}^{2}+\hat{x}_{1}^{2}\right), \\
\hat{K}_{1}=\frac{1}{4 \theta}\left(\hat{x}_{0} \hat{x}_{1}+\hat{x}_{1} \hat{x}_{0}\right),
\end{array}
$$

noncommutative spacetime..

\diamond It is a special feature of two dimensions that the $(2+1)$ connected Lorentz group is an inner automorphism group
\diamond Its generators are ad \hat{J}_{3} and $\operatorname{ad} \hat{K}_{a}$,
\diamond

$$
\begin{gathered}
\hat{J}_{2}=\frac{1}{4 \theta}\left(\hat{x}_{0}^{2}+\hat{x}_{1}^{2}\right) \\
\hat{K}_{1}=\frac{1}{4 \theta}\left(\hat{x}_{0} \hat{x}_{1}+\hat{x}_{1} \hat{x}_{0}\right), \\
\hat{K}_{2}=\frac{1}{4 \theta}\left(\hat{x}_{0}^{2}-\hat{x}_{1}^{2}\right),
\end{gathered}
$$

noncommutative spacetime..

\diamond Causality: It is impossible to localize (the representation of) "coordinate" time \hat{x}_{0} in $\mathcal{A}_{\theta}\left(\mathbb{R}^{2}\right)$ sharply. This leads to failure of causality chachine etal.

noncommutative spacetime..

\diamond Causality: It is impossible to localize (the representation of) "coordinate" time \hat{x}_{0} in $\mathcal{A}_{\theta}\left(\mathbb{R}^{2}\right)$ sharply. This leads to failure of causality chaichian etal.
\diamond The following important point was emphasised to us by Doplicher. In quantum mechanics, if \hat{p} is momentum, $\exp (i \xi \hat{p})$ is spatial translation by amount ξ. This ξ is not the eigenvalue of the position operator \hat{x}. In the same way, the amount τ of time translation is not "coordinate time", the eigenvalue of \hat{x}_{0}. It makes sense to talk about a state and its translate by $U(\tau)$

noncommutative spacetime..

\diamond Causality: It is impossible to localize (the representation of) "coordinate" time \hat{x}_{0} in $\mathcal{A}_{\theta}\left(\mathbb{R}^{2}\right)$ sharply. This leads to failure of causality chaichian et al.
\diamond The following important point was emphasised to us by Doplicher. In quantum mechanics, if \hat{p} is momentum, $\exp (i \xi \hat{p})$ is spatial translation by amount ξ. This ξ is not the eigenvalue of the position operator \hat{x}. In the same way, the amount τ of time translation is not "coordinate time", the eigenvalue of \hat{x}_{0}. It makes sense to talk about a state and its translate by $U(\tau)$
\diamond Concepts like duration of an experiment for $\theta=0$ are expressed using $U(\tau)$. They carry over to the noncommutative case too.

Representation theory..

\diamond Observables, states and dynamics of quantum theory are to be based on the algebra $\mathcal{A}_{\theta}\left(\mathbb{R}^{2}\right)$. Here we develop the formalism for their construction.

Representation theory..

- Observables, states and dynamics of quantum theory are to be based on the algebra $\mathcal{A}_{\theta}\left(\mathbb{R}^{2}\right)$. Here we develop the formalism for their construction.
\diamond To each $\hat{\alpha} \in \mathcal{A}_{\theta}\left(\mathbb{R}^{2}\right)$, we associate its left and right regular representations $\hat{\alpha}^{L}$ and $\hat{\alpha}^{R}$,

$$
\hat{\alpha}^{L} \hat{\beta}=\hat{\alpha} \hat{\beta}, \hat{\alpha}^{R} \hat{\beta}=\hat{\beta} \hat{\alpha}, \hat{\beta} \in \mathcal{A}_{\theta}\left(\mathbb{R}^{2}\right),
$$

with $\hat{\alpha}^{L} \hat{\beta}^{L}=(\hat{\alpha} \hat{\beta})^{L}$ and $\hat{\alpha}^{R} \hat{\beta}^{R}=(\hat{\beta} \hat{\alpha})^{R}$. The carrier space of this representation is $\mathcal{A}_{\theta}\left(\mathbb{R}^{2}\right)$ itself.

Representation theory..

- Observables, states and dynamics of quantum theory are to be based on the algebra $\mathcal{A}_{\theta}\left(\mathbb{R}^{2}\right)$. Here we develop the formalism for their construction.
\diamond To each $\hat{\alpha} \in \mathcal{A}_{\theta}\left(\mathbb{R}^{2}\right)$, we associate its left and right regular representations $\hat{\alpha}^{L}$ and $\hat{\alpha}^{R}$,

$$
\hat{\alpha}^{L} \hat{\beta}=\hat{\alpha} \hat{\beta}, \hat{\alpha}^{R} \hat{\beta}=\hat{\beta} \hat{\alpha}, \hat{\beta} \in \mathcal{A}_{\theta}\left(\mathbb{R}^{2}\right),
$$

with $\hat{\alpha}^{L} \hat{\beta}^{L}=(\hat{\alpha} \hat{\beta})^{L}$ and $\hat{\alpha}^{R} \hat{\beta}^{R}=(\hat{\beta} \hat{\alpha})^{R}$. The carrier space of this representation is $\mathcal{A}_{\theta}\left(\mathbb{R}^{2}\right)$ itself.
\diamond An "inner"product on $\mathcal{A}_{\theta}\left(\mathbb{R}^{2}\right)$ is needed for an eventual construction of a Hilbert space.

Representation theory..

\diamond Consider a map $\chi: \mathcal{A}_{\theta}\left(\mathbb{R}^{2}\right) \rightarrow \mathbb{C}$ which is also positive,i.e.,

$$
\chi\left(\hat{\alpha}^{*} \hat{\alpha}\right) \geq 0 .
$$

Representation theory..

\diamond Consider a map $\chi: \mathcal{A}_{\theta}\left(\mathbb{R}^{2}\right) \rightarrow \mathbb{C}$ which is also positive,i.e.,

$$
\chi\left(\hat{\alpha}^{*} \hat{\alpha}\right) \geq 0 .
$$

\diamond Then we can set:

$$
\langle\hat{\alpha}, \hat{\beta}\rangle=\chi\left(\hat{\alpha}^{*} \hat{\beta}\right) .
$$

Representation theory..

\diamond Consider a map $\chi: \mathcal{A}_{\theta}\left(\mathbb{R}^{2}\right) \rightarrow \mathbb{C}$ which is also positive,i.e.,

$$
\chi\left(\hat{\alpha}^{*} \hat{\alpha}\right) \geq 0 .
$$

\diamond Then we can set:

$$
\langle\hat{\alpha}, \hat{\beta}\rangle=\chi\left(\hat{\alpha}^{*} \hat{\beta}\right) .
$$

\diamond It will be a scalar product if $\chi\left(\hat{\alpha}^{*} \alpha\right)=0$ implies $\hat{\alpha}=0$. If that is not the case, it is necessary to eliminate null vectors.

Representation theory..

\diamond Consider a map $\chi: \mathcal{A}_{\theta}\left(\mathbb{R}^{2}\right) \rightarrow \mathbb{C}$ which is also positive,i.e.,

$$
\chi\left(\hat{\alpha}^{*} \hat{\alpha}\right) \geq 0 .
$$

\diamond Then we can set:

$$
\langle\hat{\alpha}, \hat{\beta}\rangle=\chi\left(\hat{\alpha}^{*} \hat{\beta}\right) .
$$

\diamond It will be a scalar product if $\chi\left(\hat{\alpha}^{*} \alpha\right)=0$ implies $\hat{\alpha}=0$. If that is not the case, it is necessary to eliminate null vectors.
\diamond We illustrate these ideas briefly in the context of the commutative case, when $\theta=0$

The commutative case

\diamond The algebra \mathcal{C} in the commutative case is

$$
\mathcal{A}_{0}\left(\mathbb{R}^{2}\right)=C^{\infty}(\mathbb{R} \times \mathbb{R})
$$

The commutative case

\diamond The algebra \mathcal{C} in the commutative case is

$$
\mathcal{A}_{0}\left(\mathbb{R}^{2}\right)=C^{\infty}(\mathbb{R} \times \mathbb{R})
$$

\diamond There is no distinction now between $\hat{\alpha}^{L}$ and $\hat{\alpha}^{R}$: $\hat{\alpha}^{L}=\hat{\alpha}^{R}$.

The commutative case

\diamond The algebra \mathcal{C} in the commutative case is

$$
\mathcal{A}_{0}\left(\mathbb{R}^{2}\right)=C^{\infty}(\mathbb{R} \times \mathbb{R})
$$

\diamond There is no distinction now between $\hat{\alpha}^{L}$ and $\hat{\alpha}^{R}$: $\hat{\alpha}^{L}=\hat{\alpha}^{R}$.
\diamond There is a family of positive maps χ_{t} of interest obtained by integrating $\mathbf{i} \psi$ in x_{1} at "time" t :

$$
\chi_{t}(\psi)=\int d x_{1} \psi\left(t, x_{1}\right)
$$

The commutative case

\diamond The algebra \mathcal{C} in the commutative case is

$$
\mathcal{A}_{0}\left(\mathbb{R}^{2}\right)=C^{\infty}(\mathbb{R} \times \mathbb{R})
$$

\diamond There is no distinction now between $\hat{\alpha}^{L}$ and $\hat{\alpha}^{R}$: $\hat{\alpha}^{L}=\hat{\alpha}^{R}$.
\diamond There is a family of positive maps χ_{t} of interest obtained by integrating $\mathbf{i} \psi$ in x_{1} at "time" t :

$$
\chi_{t}(\psi)=\int d x_{1} \psi\left(t, x_{1}\right)
$$

\diamond We get a family of spaces \mathcal{C}_{t} with a positive-definite sesquilinear form $(., .)_{t}$:

$$
(\psi, \varphi)_{t}=\int d x_{1} \psi^{*}\left(t, x_{1}\right) \varphi\left(t, x_{1}\right)
$$

The commutative case

\diamond Every function $\hat{\alpha}$ which vanishes at time t is a two-sided ideal $\mathcal{I}_{t}^{\theta=0}=\mathcal{I}_{t}^{0}$ of \mathcal{C}. As elements of \mathcal{C}_{t}, they become null vectors.

The commutative case

\diamond Every function $\hat{\alpha}$ which vanishes at time t is a two-sided ideal $\mathcal{I}_{t}^{\theta=0}=\mathcal{I}_{t}^{0}$ of \mathcal{C}. As elements of \mathcal{C}_{t}, they become null vectors.
\diamond As in the GNS construction Haag, we can quotient by these vectors and work with $\mathcal{C}_{t} / \mathcal{N}_{t}^{0}$.

The commutative case

\diamond Every function $\hat{\alpha}$ which vanishes at time t is a two-sided ideal $\mathcal{I}_{t}^{\theta=0}=\mathcal{I}_{t}^{0}$ of \mathcal{C}. As elements of \mathcal{C}_{t}, they become null vectors.
\diamond As in the GNS construction Haag, we can quotient by these vectors and work with $\mathcal{C}_{t} / \mathcal{N}_{t}^{0}$.
\diamond The completion $\overline{\mathcal{C}_{t} / \mathcal{N}_{t}^{0}}$ of $\mathcal{C}_{t} / \mathcal{N}_{t}^{0}$ in this scalar product gives a Hilbert space $\widehat{\mathcal{H}}_{t}^{0}$

The commutative case

\diamond Every function $\hat{\alpha}$ which vanishes at time t is a two-sided ideal $\mathcal{I}_{t}^{\theta=0}=\mathcal{I}_{t}^{0}$ of \mathcal{C}. As elements of \mathcal{C}_{t}, they become null vectors.
\diamond As in the GNS construction Haag, we can quotient by these vectors and work with $\mathcal{C}_{t} / \mathcal{N}_{t}^{0}$.
\diamond The completion $\overline{\mathcal{C}_{t} / \mathcal{N}_{t}^{0}}$ of $\mathcal{C}_{t} / \mathcal{N}_{t}^{0}$ in this scalar product gives a Hilbert space $\widehat{\mathcal{H}}_{t}^{0}$
\diamond For elements $\psi+\mathcal{N}_{t}^{0}$ and $\chi+\mathcal{N}_{t}^{0}$ in $\mathcal{C}_{t} / \mathcal{N}_{t}^{0}$, the scalar product is

$$
\left(\psi+\mathcal{N}_{t}^{0}, \chi+\mathcal{N}_{t}^{0}\right)_{t}=(\psi, \chi)_{t}
$$

The commutative case

\diamond The quantum mechanical Hilbert space however is not $\hat{\mathcal{H}}_{t}^{0}$.

The commutative case

\diamond The quantum mechanical Hilbert space however is not $\widehat{\mathcal{H}}_{t}^{0}$.
\diamond It is constructed in a different way, starting from a subspace $\tilde{\mathcal{H}}_{0, t} \subset \mathcal{C}_{t}$ which contains only $\{0\}$ as the null vector: $\tilde{\mathcal{H}}_{0, t} \cap \mathcal{N}_{t}^{0}=\{0\}$

The commutative case

\diamond The quantum mechanical Hilbert space however is not $\widehat{\mathcal{H}}_{t}^{0}$.
\diamond It is constructed in a different way, starting from a subspace $\tilde{\mathcal{H}}_{0, t} \subset \mathcal{C}_{t}$ which contains only $\{0\}$ as the null vector: $\tilde{\mathcal{H}}_{0, t} \cap \mathcal{N}_{t}^{0}=\{0\}$
\diamond Then χ_{t} is a good scalar product on $\tilde{\mathcal{H}}_{0, t}$ and the quantum mechanical Hilbert space is given by
$\mathcal{H}_{t}^{0}=\tilde{\mathcal{H}}_{0, t}$, the completion of $\tilde{\mathcal{H}}_{0, t}$.

The commutative case

\diamond The quantum mechanical Hilbert space however is not $\widehat{\mathcal{H}}_{t}^{0}$.
\diamond It is constructed in a different way, starting from a subspace $\tilde{\mathcal{H}}_{0, t} \subset \mathcal{C}_{t}$ which contains only $\{0\}$ as the null vector: $\tilde{\mathcal{H}}_{0, t} \cap \mathcal{N}_{t}^{0}=\{0\}$
\diamond Then χ_{t} is a good scalar product on $\tilde{\mathcal{H}}_{0, t}$ and the quantum mechanical Hilbert space is given by $\mathcal{H}_{t}^{0}=\tilde{\mathcal{H}}_{0, t}$, the completion of $\tilde{\mathcal{H}}_{0, t}$.
\diamond The subspace $\tilde{\mathcal{H}}_{0, t}$ depends on the Hamiltonian H and is chosen as follows.

The commutative case

\diamond Let H be a time-independent Hamiltonian on commutative spacetime, self-adjoint on the standard quantum mechanical Hilbert space $L^{2}(\mathbb{R})$.

The commutative case

\diamond Let H be a time-independent Hamiltonian on commutative spacetime, self-adjoint on the standard quantum mechanical Hilbert space $L^{2}(\mathbb{R})$.
\diamond We now pick the subspace $\tilde{\mathcal{H}}_{0, t}$ of \mathcal{C}_{t} by requiring that vectors in \mathcal{C}_{t} obey the time-dependent Schrödinger equation:

$$
\tilde{\mathcal{H}}_{0, t}=\left\{\psi \in \mathcal{C}_{t}:\left(i \partial_{x_{0}}-H\right) \psi\left(x_{0}, x_{1}\right)=0\right\}
$$

The commutative case

\diamond Let H be a time-independent Hamiltonian on commutative spacetime, self-adjoint on the standard quantum mechanical Hilbert space $L^{2}(\mathbb{R})$.
\diamond We now pick the subspace $\tilde{\mathcal{H}}_{0, t}$ of \mathcal{C}_{t} by requiring that vectors in \mathcal{C}_{t} obey the time-dependent Schrödinger equation:

$$
\tilde{\mathcal{H}}_{0, t}=\left\{\psi \in \mathcal{C}_{t}:\left(i \partial_{x_{0}}-H\right) \psi\left(x_{0}, x_{1}\right)=0\right\}
$$

\diamond The operator $i \partial_{x_{0}}$ is not hermitian on all of \mathcal{C}_{t} :

$$
\left(\psi, i \partial_{x_{0}} \chi\right)_{t} \neq\left(i \partial_{x_{0}} \psi, \chi\right)_{t} \text { for generic } \psi, \chi \in \mathcal{C}_{t}
$$

The commutative case

\diamond Let H be a time-independent Hamiltonian on commutative spacetime, self-adjoint on the standard quantum mechanical Hilbert space $L^{2}(\mathbb{R})$.
\diamond We now pick the subspace $\tilde{\mathcal{H}}_{0, t}$ of \mathcal{C}_{t} by requiring that vectors in \mathcal{C}_{t} obey the time-dependent Schrödinger equation:

$$
\tilde{\mathcal{H}}_{0, t}=\left\{\psi \in \mathcal{C}_{t}:\left(i \partial_{x_{0}}-H\right) \psi\left(x_{0}, x_{1}\right)=0\right\}
$$

\diamond The operator $i \partial_{x_{0}}$ is not hermitian on all of \mathcal{C}_{t} :

$$
\left(\psi, i \partial_{x_{0}} \chi\right) \xlongequal[=]{=}\left(i \partial_{x_{0}} \psi, \chi\right)_{t} \text { for generic } \psi, \chi \in \tilde{\mathcal{H}}_{0}, t,
$$

\diamond but on $\tilde{\mathcal{H}}_{0, t}$, it fulfills this property:

The commutative case

\diamond We notice since,

$$
\begin{gathered}
\psi\left(x_{0}+\tau, x_{1}\right)=\left(e^{-i \tau\left(i \partial_{x_{0}}\right)} \psi\right)\left(x_{0}, x_{1}\right) \\
=\left(e^{-i \tau H} \psi\right)\left(x_{0}, x_{1}\right)
\end{gathered}
$$

time evolution preserves the norm of $\psi \in \tilde{\mathcal{H}}_{0, t}$.
Therefore if it vanishes at $x_{0}=t$, it vanishes identically and is the zero element of $\tilde{\mathcal{H}}_{0, t}$: the only null vector in $\tilde{\mathcal{H}}_{0, t}$ is 0 :

The commutative case

\diamond We notice since,

$$
\begin{gathered}
\psi\left(x_{0}+\tau, x_{1}\right)=\left(e^{-i \tau\left(i \partial_{x_{0}}\right)} \psi\right)\left(x_{0}, x_{1}\right) \\
=\left(e^{-i \tau H} \psi\right)\left(x_{0}, x_{1}\right)
\end{gathered}
$$

time evolution preserves the norm of $\psi \in \tilde{\mathcal{H}}_{0, t}$.
Therefore if it vanishes at $x_{0}=t$, it vanishes identically and is the zero element of $\tilde{\mathcal{H}}_{0, t}$: the only null vector in $\tilde{\mathcal{H}}_{0, t}$ is 0 :
\diamond The completion of $\tilde{\mathcal{H}}_{0, t}$ is the quantum Hilbert space \mathcal{H}_{t}^{0}. There is no convenient inclusion of \mathcal{H}_{t}^{0} in $\widehat{\mathcal{H}}_{t}^{0}$.

The commutative case

\diamond Under time evolution by amount τ, ψ becomes

$$
e^{-i \tau H} \psi=e^{-i\left(\hat{x}_{0}+\tau\right) H} \psi_{0} \in \tilde{\mathcal{H}}_{0, t}
$$

The commutative case

\diamond Under time evolution by amount τ, ψ becomes

$$
e^{-i \tau H} \psi=e^{-i\left(\hat{x}_{0}+\tau\right) H} \psi_{0} \in \tilde{\mathcal{H}}_{0, t} .
$$

where ψ_{0} is a constant function of x_{0} so that $i \partial_{x_{0}} \psi_{0}=0$. This conceptual difference between coordinate time \hat{x}_{0} and time translation τ is crucial for NC spacetime.

The commutative case

\diamond Under time evolution by amount τ, ψ becomes

$$
e^{-i \tau H} \psi=e^{-i\left(\hat{x}_{0}+\tau\right) H} \psi_{0} \in \tilde{\mathcal{H}}_{0, t} .
$$

where ψ_{0} is a constant function of x_{0} so that $i \partial_{x_{0}} \psi_{0}=0$. This conceptual difference between coordinate time \hat{x}_{0} and time translation τ is crucial for NC spacetime.
\diamond An observable \hat{K} has to respect the Schrödinger constraint and leave $\tilde{\mathcal{H}}_{0, t}$ (and hence \mathcal{H}_{t}^{0}) invariant. This means that

$$
\left[i \partial_{x_{0}}-H, \hat{K}\right]=0
$$

The commutative case

\diamond Under time translation, \hat{x}_{0} in \hat{K} shifts to $\hat{x}_{0}+\tau$ as it should:

$$
\hat{K}(\tau)=e^{-i \tau H} \hat{K} e^{+i \tau H}=e^{-i\left(\hat{x}_{0}+\tau\right) H} \hat{L} e^{+i\left(\hat{x}_{0}+\tau\right) H}
$$

The commutative case

\diamond Under time translation, \hat{x}_{0} in \hat{K} shifts to $\hat{x}_{0}+\tau$ as it should:

$$
\hat{K}(0)=e^{-i \hat{x}_{0} H} \hat{L} e^{+i \hat{x}_{0} H}
$$

The commutative case

\diamond Under time translation, \hat{x}_{0} in \hat{K} shifts to $\hat{x}_{0}+\tau$ as it should:

$$
\begin{aligned}
& \hat{K}(\tau) e^{-i-H \hat{K} e^{+i \tau H}=e^{-i\left(\hat{x}_{0}+\tau\right) H} \hat{L} e^{+i\left(\hat{x}_{0}+\tau\right) H}} \\
& \text { vhere } \hat{L} \text { is defined by: }
\end{aligned}
$$

$$
\hat{K}(0)=e^{-i \hat{x}_{0} H} \hat{L} e^{+i \hat{x}_{0} H}
$$

\diamond What we have described above leads to conventional physics. As expected \hat{x}_{0} is not an observable as it does not commute with $i \partial_{x_{0}}-H$:

$$
\left[\hat{x}_{0}, i \partial_{x_{0}}-H\right]=-i \mathbb{I}
$$

The noncommutative Case

\diamond The above discussion shows that for quantum theory, what we need are: (1) a suitable inner product on $\mathcal{A}_{\theta}\left(\mathbb{R}^{2}\right)$; (2) a Schrödinger constraint on $\mathcal{A}_{\theta}\left(\mathbb{R}^{2}\right)$; and (3) a Hamiltonian \hat{H} and observables which act on the constrained subspace of $\mathcal{A}_{\theta}\left(\mathbb{R}^{2}\right)$.

The noncommutative Case

\diamond The above discussion shows that for quantum theory, what we need are: (1) a suitable inner product on $\mathcal{A}_{\theta}\left(\mathbb{R}^{2}\right)$; (2) a Schrödinger constraint on $\mathcal{A}_{\theta}\left(\mathbb{R}^{2}\right)$; and (3) a Hamiltonian \hat{H} and observables which act on the constrained subspace of $\mathcal{A}_{\theta}\left(\mathbb{R}^{2}\right)$.
\diamond We also require that (1) is compatible with the self-adjointness of \hat{H} and classically real observables.

The noncommutative Case

\diamond The above discussion shows that for quantum theory, what we need are: (1) a suitable inner product on $\mathcal{A}_{\theta}\left(\mathbb{R}^{2}\right)$; (2) a Schrödinger constraint on $\mathcal{A}_{\theta}\left(\mathbb{R}^{2}\right)$; and (3) a Hamiltonian \hat{H} and observables which act on the constrained subspace of $\mathcal{A}_{\theta}\left(\mathbb{R}^{2}\right)$.
\diamond We also require that (1) is compatible with the self-adjointness of \hat{H} and classically real observables.
\diamond We now consider these one by one.

The symbol calculus

\diamond The first inner product is based on symbol calculus. If $\hat{\alpha} \in \mathcal{A}_{\theta}\left(\mathbb{R}^{2}\right)$, we write it as

$$
\hat{\alpha}=\int d^{2} k \tilde{\alpha}(k) e^{i k_{1} \hat{x}_{1}} e^{i k_{0} \hat{x}_{0}}
$$

and associate the symbol α_{S} with $\hat{\alpha}$

The symbol calculus

\diamond The first inner product is based on symbol calculus. If $\hat{\alpha} \in \mathcal{A}_{\theta}\left(\mathbb{R}^{2}\right)$, we write it as

$$
\hat{\alpha}=\int d^{2} k \tilde{\alpha}(k) e^{i k_{1} \hat{x}_{1}} e^{i k_{0} \hat{x}_{0}}
$$

and associate the symbol α_{S} with $\hat{\alpha}$ where

$$
\alpha_{S}\left(x_{0}, x_{1}\right)=\int d^{2} k \tilde{\alpha}(k) e^{i k_{1} x_{1}} e^{i k_{0} x_{0}} .
$$

The symbol calculus

\diamond The first inner product is based on symbol calculus. If $\hat{\alpha} \in \mathcal{A}_{\theta}\left(\mathbb{R}^{2}\right)$, we write it as

$$
\hat{\alpha}=\int d^{2} k \tilde{\alpha}(k) e^{i k_{1} \hat{x}_{1}} e^{i k_{0} \hat{x}_{0}}
$$

and associate the symbol α_{S} with $\hat{\alpha}$ where

$$
\alpha_{S}\left(x_{0}, x_{1}\right)=\int d^{2} k \tilde{\alpha}(k) e^{i k_{1} x_{1}} e^{i k_{0} x_{0}} .
$$

\diamond The symbol is a function on \mathbb{R}^{2}. It is NOT the MOYAL symbol. Using this symbol, we can define a positive map S_{t} by

$$
S_{t}(\hat{\alpha})=\int d x_{1} \alpha_{S}\left(t, x_{1}\right)
$$

The Schrödinger constraint

\diamond The noncommutative analogue " $i \frac{\partial}{\partial x_{0}}$ " is

$$
i \frac{\partial}{\partial x_{0}} \equiv \hat{P}_{0}=-\frac{1}{\theta} \operatorname{ad} \hat{x}_{1},
$$

The Schrödinger constraint

\diamond The noncommutative analogue " $i \frac{\partial}{\partial x_{0}}$ " is

$$
i \frac{\partial}{\partial x_{0}} \equiv \hat{P}_{0}=-\frac{1}{\theta} \operatorname{ad} \hat{x}_{1},
$$

\diamond If the Hamiltonian \hat{H} is time-independent,

$$
\left[i \partial_{x_{0}}, \hat{H}\right]=0
$$

The Schrödinger constraint

\diamond The noncommutative analogue " $i \frac{\partial}{\partial x_{0}}$ " is

$$
i \frac{\partial}{\partial x_{0}} \equiv \hat{P}_{0}=-\frac{1}{\theta} \operatorname{ad} \hat{x}_{1}
$$

\diamond If the Hamiltonian \hat{H} is time-independent,

$$
\left[i \partial_{x_{0}}, \hat{H}\right]=0
$$

- We can write Hamiltonian as $\hat{H}=\hat{H}\left(\hat{x}_{1}^{L}, \hat{P}_{1}\right)$.

The Schrödinger constraint

\diamond The noncommutative analogue " $i \frac{\partial}{\partial x_{0}}$ " is

$$
i \frac{\partial}{\partial x_{0}} \equiv \hat{P}_{0}=-\frac{1}{\theta} \operatorname{ad} \hat{x}_{1},
$$

\diamond If the Hamiltonian \hat{H} is time-independent,

\diamond We can write Hamiltonian as $\hat{H}=\hat{H}\left(\hat{x}_{1}^{L}, \hat{P}_{1}\right)$.
\diamond If \hat{H} has time-dependence then - is not correct, it will have $\hat{x}_{0}^{L}, \hat{x}_{0}^{R}$. But $\hat{x}_{0}^{L}=\theta \hat{P}_{1}+\hat{x}_{1}^{R}$, so in the time-dependent case we write $\hat{H}=\hat{H}\left(\hat{x}_{0}^{R}, \hat{x}_{1}^{L}, \hat{P}_{1}\right)$

The Schrödinger constraint

\diamond The states constrained by the Schrödinger equation is

$$
\tilde{\mathcal{H}}_{\theta}=\left\{\hat{\psi} \in \mathcal{A}_{\theta}\left(\mathbb{R}^{2}\right):\left(i \partial_{x_{0}}-\hat{H}\right) \hat{\psi}=0\right\}
$$

The Schrödinger constraint

\diamond The states constrained by the Schrödinger equation is

$$
\tilde{\mathcal{H}}_{\theta}=\left\{\hat{\psi} \in \mathcal{A}_{\theta}\left(\mathbb{R}^{2}\right):\left(i \partial_{x_{0}}-\hat{H}\right) \hat{\psi}=0\right\}
$$

\diamond The solutions are easy to construct:

$$
\hat{\psi} \in \tilde{\mathcal{H}}_{\theta} \Longrightarrow \hat{\psi}=e^{-i\left(\hat{x}_{0}^{R}-\tau_{I}\right) \hat{H}\left(\hat{P}_{1}, \hat{x}_{1}^{L}\right)} \hat{\chi}\left(\hat{x}_{1}\right)
$$

The Schrödinger constraint

\diamond The states constrained by the Schrödinger equation is

$$
\tilde{\mathcal{H}}_{\theta}=\left\{\hat{\psi} \in \mathcal{A}_{\theta}\left(\mathbb{R}^{2}\right):\left(i \partial_{x_{0}}-\hat{H}\right) \hat{\psi}=0\right\}
$$

\diamond The solutions are easy to construct:

\diamond If $\hat{H} /$ depends on \hat{x}_{0}^{R}, we can easily generalise the formula

$$
\hat{\psi} \in \tilde{\mathcal{H}}_{\theta} \Longrightarrow \hat{\psi}=U\left(\hat{x}_{0}^{R}, \tau_{I}\right) \hat{\chi}\left(\hat{x}_{1}\right)
$$

The Schrödinger constraint

\diamond The states constrained by the Schrödinger equation is

$$
\tilde{\mathcal{H}}_{\theta}=\left\{\hat{\psi} \in \mathcal{A}_{\theta}\left(\mathbb{R}^{2}\right):\left(i \partial_{x_{0}}-\hat{H}\right) \hat{\psi}=0\right\}
$$

\diamond The solutions are easy to construct:

$$
\hat{\psi} \in \tilde{\mathcal{H}}_{\theta} \Longrightarrow \hat{\psi}=e^{-i\left(\hat{x}_{0}^{R}-\tau_{I}\right) \hat{H}\left(\hat{P}_{1}, \hat{x}_{1}^{L}\right)} \hat{\chi}\left(\hat{x}_{1}\right)
$$

\diamond If \hat{H} depends on \hat{x}_{0}^{R}, we can easily generalise the formula

$$
\begin{gathered}
\hat{\psi} \in \tilde{\mathcal{H}}_{\theta} \Longrightarrow \hat{\psi}=U\left(\hat{x}_{0}^{R}, \tau_{I}\right) \hat{\chi}\left(\hat{x}_{1}\right) \\
U\left(\hat{x}_{0}^{R}, \tau_{I}\right)=\left.T \exp \left[-i\left(\int_{\tau_{I}}^{x_{0}} d \tau \hat{H}\left(\tau, \hat{x}_{1}^{L}, \hat{P}_{1}\right)\right)\right]\right|_{x_{0}=\hat{x}_{0}^{R}}
\end{gathered}
$$

Some observations

\diamond An alternative useful form for $\hat{\psi}$ is

$$
\hat{\psi}=V\left(\hat{x}_{0}^{R},-\infty\right) \hat{\chi}\left(\hat{x}_{1}\right)
$$

Some observations

\diamond An alternative useful form for $\hat{\psi}$ is

$$
\begin{gathered}
\hat{\psi}=V\left(\hat{x}_{0}^{R},-\infty\right) \hat{\chi}\left(\hat{x}_{1}\right) \\
V\left(\hat{x}_{0}^{R},-\infty\right)=T \exp \left[-i \int_{-\infty}^{0} d \tau \hat{H}\left(\hat{x}_{0}^{R}+\tau, \hat{x}_{1}^{L}, \hat{P}_{1}\right)\right]
\end{gathered}
$$

where the integral can be defined at the lower limit using the usual adiabatic cut-off.

Some observations

\diamond An alternative useful form for $\hat{\psi}$ is

$$
\hat{\psi}=V\left(\hat{x}_{0}^{R},-\infty\right) \hat{\chi}\left(\hat{x}_{1}\right)
$$

$$
V\left(\hat{x}_{0}^{R},-\infty\right)=T \exp \left[-i \int_{-\infty}^{0} d \tau \hat{H}\left(\hat{x}_{0}^{R}+\tau, \hat{x}_{1}^{L}, \hat{P}_{1}\right)\right]
$$

\diamond The Hilbert spaces \mathcal{H}_{θ}^{S} and \mathcal{H}_{θ}^{V} based on scalar products $(., .)_{S}$ and (.,. $)_{V}$ are obtained from $\tilde{\mathcal{H}}_{\theta}$ by completion. Our basic assumption is that \hat{H} is self-adjoint in the chosen scalar product.

Some observations

\diamond In the passage from H to \hat{H}, there is an apparent ambiguity. We replaced x_{0} by \hat{x}_{0}^{L}, but we may be tempted to replace x_{0} by \hat{x}_{0}^{R}. But it is incorrect to replace x_{0} by \hat{x}_{0}^{R} and at the same time x_{1} by \hat{x}_{1}^{L}. Time and space should NOT commute when θ becomes nonzero whereas \hat{x}_{0}^{R} and \hat{x}_{1}^{L} commute.

Some observations

\diamond In the passage from H to \hat{H}, there is an apparent ambiguity. We replaced x_{0} by \hat{x}_{0}^{L}, but we may be tempted to replace x_{0} by \hat{x}_{0}^{R}. But it is incorrect to replace x_{0} by \hat{x}_{0}^{R} and at the same time x_{1} by \hat{x}_{1}^{L}. Time and space should NOT commute when θ becomes nonzero whereas \hat{x}_{0}^{R} and \hat{x}_{1}^{L} commute.
\diamond Note that $\hat{x}_{0}^{L}=-\theta \hat{P}_{1}+\hat{x}_{0}^{R}$ and that \hat{x}_{0}^{R} behaves much like the $\theta=0$ time x_{0}. Thus if H has time-dependence, its effect on \hat{H} is to induce new momentum-dependent terms leading to nonlocal ("acausal") interactions.

Some observations

\diamond In the passage from H to \hat{H}, there is an apparent ambiguity. We replaced x_{0} by \hat{x}_{0}^{L}, but we may be tempted to replace x_{0} by \hat{x}_{0}^{R}. But it is incorrect to replace x_{0} by \hat{x}_{0}^{R} and at the same time x_{1} by \hat{x}_{1}^{L}. Time and space should NOT commute when θ becomes nonzero whereas \hat{x}_{0}^{R} and \hat{x}_{1}^{L} commute.
\diamond Note that $\hat{x}_{0}^{L}=-\theta \hat{P}_{1}+\hat{x}_{0}^{R}$ and that \hat{x}_{0}^{R} behaves much like the $\theta=0$ time x_{0}. Thus if H has time-dependence, its effect on \hat{H} is to induce new momentum-dependent terms leading to nonlocal ("acausal") interactions.
\diamond We can construct observables as before and no complications are encountered.

A spectral map:

\diamond For $\theta=0$ let the Hamiltonian be: $H=-\frac{1}{2 m} \frac{\partial^{2}}{\partial x_{1}^{2}}+V\left(\hat{x}_{1}\right)$ with eigenstates ψ_{E} fulfilling the Schrödinger constraint:

$$
\psi_{E}\left(\hat{x}_{0}, \hat{x}_{1}\right)=\varphi_{E}\left(\hat{x}_{1}\right) e^{-i E \hat{x}_{0}}, H \varphi_{E}=E \varphi_{E}
$$

A spectral map:

\diamond For $\theta=0$ let the Hamiltonian be: $H=-\frac{1}{2 m} \frac{\partial^{2}}{\partial x_{1}^{2}}+V\left(\hat{x}_{1}\right)$ with eigenstates ψ_{E} fulfilling the Schrödinger constraint:

$$
\psi_{E}\left(\hat{x}_{0}, \hat{x}_{1}\right)=\varphi_{E}\left(\hat{x}_{1}\right) e^{-i E \hat{x}_{0}}, H \varphi_{E}=E \varphi_{E}
$$

\diamond The Hamiltonian \hat{H} associated to H for $\theta \neq 0$ is

$$
\hat{H}=\frac{\hat{P}_{1}^{2}}{2 m}+V\left(\hat{x}_{1}\right)
$$

A spectral map:

\diamond For $\theta=0$ let the Hamiltonian be: $H=-\frac{1}{2 m} \frac{\partial^{2}}{\partial x_{1}^{2}}+V\left(\hat{x}_{1}\right)$ with eigenstates ψ_{E} fulfilling the Schrödinger constraint:

$$
\psi_{E}\left(\hat{x}_{0}, \hat{x}_{1}\right)=\varphi_{E}\left(\hat{x}_{1}\right) e^{-i E \hat{x}_{0}}, H \varphi_{E}=E \varphi_{E}
$$

\diamond The Hamiltonian \hat{H} associated to H for $\theta \neq 0$ is

$$
\hat{H}=\frac{\hat{P}_{1}^{2}}{2 m}+V\left(\hat{x}_{1}\right)
$$

\diamond Then \hat{H} has exactly the same spectrum as H and its eigenstates $\hat{\psi}_{E}$ are obtained from ψ_{E}.

$$
\hat{\psi}_{E}=\varphi_{E}\left(\hat{x}_{1}\right) e^{-i E \hat{x}_{0}}, \hat{H} \varphi_{E}\left(\hat{x}_{1}\right)=E \varphi_{E}\left(\hat{x}_{1}\right) .
$$

QFT.....:

\diamond We can also see how to do perturbative qft's, our approach can be inferred from the work of Doplicher et al. We require of $\hat{\Phi}$ that it is a solution of the massive Klein-Gordon equation: $\left(\operatorname{ad} \hat{P}_{0}^{2}-\operatorname{ad} \hat{P}_{1}^{2}+\mu^{2}\right) \hat{\Phi}=0$.

QFT.....:

\diamond We can also see how to do perturbative qft's, our approach can be inferred from the work of Doplicher et al. We require of $\hat{\Phi}$ that it is a solution of the massive Klein-Gordon equation: $\left(\operatorname{ad} \hat{P}_{0}^{2}-\operatorname{ad} \hat{P}_{1}^{2}+\mu^{2}\right) \hat{\Phi}=0$.
\diamond The plane wave solutions are

$$
\hat{\phi}_{k}=e^{i k \hat{x}_{1}} e^{-i \omega(k) \hat{x}_{0}}, \omega(k)^{2}-k^{2}=\mu^{2} .
$$

QFT.....:

\diamond We can also see how to do perturbative qft's, our approach can be inferred from the work of Doplicher et al. We require of $\hat{\Phi}$ that it is a solution of the massive Klein-Gordon equation: $\left(\operatorname{ad} \hat{P}_{0}^{2}-\operatorname{ad} \hat{P}_{1}^{2}+\mu^{2}\right) \hat{\Phi}=0$.
\diamond The plane wave solutions are

$$
\hat{\phi}_{k}=e^{i k \hat{x}_{1}} e^{-i \omega(k) \hat{x}_{0}}, \omega(k)^{2}-k^{2}=\mu^{2} .
$$

\diamond So for $\hat{\Phi}$, we write:

$$
\hat{\Phi}=\int \frac{d k}{2 \omega(k)}\left[a_{k} \hat{\phi}_{k}+a_{k}^{\dagger} \hat{\phi}_{k}^{\dagger}\right]
$$

where a_{k} and a_{k}^{\dagger} commute with \hat{x}_{μ} and define oscillators: $\left[a_{k}, a_{k}^{\dagger}\right]=2 \omega(k) \delta\left(k-k^{\prime}\right)$.

QFT.....:

\diamond The "free" field $\hat{\Phi}$ "coinciding with the Heisenberg field initially" after time translation by amount τ using the free Schrödinger Hamiltonian $\hat{H}_{0}=\int \frac{d k}{2 \omega(k)} a_{k}^{\dagger} a_{k}$, becomes

$$
U_{0}(\tau)(\hat{\Phi})=e^{i \tau \hat{H}_{0}} \hat{\Phi} e^{-i \tau \hat{H}_{0}}
$$

QFT.....:

\diamond The "free" field $\hat{\Phi}$ "coinciding with the Heisenberg field initially" after time translation by amount τ using the free Schrödinger Hamiltonian $\hat{H}_{0}=\int \frac{d k}{2 \omega(k)} a_{k}^{\dagger} a_{k}$, becomes

$$
U_{0}(\tau)(\hat{\Phi})=e^{i \tau \hat{H}_{0}} \hat{\Phi} e^{-i \tau \hat{H}_{0}}
$$

\diamond The interaction Hamiltonian is accordingly

$$
\hat{H}_{I}\left(x_{0}\right)=\lambda: S_{x_{0}}\left(U_{0}(\tau)(\hat{\Phi})^{4}\right):=\lambda: S_{x_{0}+\tau}\left(\hat{\Phi}^{4}\right):, \lambda>0
$$

where : : denotes the normal ordering of a_{k} and a_{k}^{\dagger}.

QFT.....:

\diamond The "free" field $\hat{\Phi}$ "coinciding with the Heisenberg field initially" after time translation by amount τ using the free Schrödinger Hamiltonian $\hat{H}_{0}=\int \frac{d k}{2 \omega(k)} a_{k}^{\dagger} a_{k}$, becomes

$$
U_{0}(\tau)(\hat{\Phi})=e^{i \tau \hat{H}_{0}} \hat{\Phi} e^{-i \tau \hat{H}_{0}}
$$

\diamond The interaction Hamiltonian is accordingly

$$
\hat{H}_{I}\left(x_{0}\right)=\lambda: S_{x_{0}}\left(U_{0}(\tau)(\hat{\Phi})^{4}\right):=\lambda: S_{x_{0}+\tau}\left(\hat{\Phi}^{4}\right):, \lambda>0
$$

where : : denotes the normal ordering of a_{k} and a_{k}^{\dagger}.
\diamond The S-matrix S can be worked out.

Quantised evolutions...

\diamond We can easily extend our earliar presentations to the cylinder, a version related to $2+1$ gravity and $\mathbb{R} \times S^{3}$. In all these models, only discrete time translations are possible, a result known before.

Quantised evolutions...

\diamond We can easily extend our earliar presentations to the cylinder, a version related to $2+1$ gravity and $\mathbb{R} \times S^{3}$. In all these models, only discrete time translations are possible, a result known before.
\diamond One striking consequence of quantised time translations is that even though a time independent Hamiltonian is an observable, in scattering processes, it is conserved only modulo $\frac{2 \pi}{\theta}$, where θ is the noncommutative parameter.

Quantised evolutions...

\diamond We can easily extend our earliar presentations to the cylinder, a version related to $2+1$ gravity and $\mathbb{R} \times S^{3}$. In all these models, only discrete time translations are possible, a result known before.
\diamond One striking consequence of quantised time translations is that even though a time independent Hamiltonian is an observable, in scattering processes, it is conserved only modulo $\frac{2 \pi}{\theta}$, where θ is the noncommutative parameter.
\diamond Scattering theory is also formulated and an approach to quantum field theory is outlined nep-th0410067, HEP 0411(2004) 068.

Quantised evolutions...

\diamond We can easily extend our earliar presentations to the cylinder, a version related to $2+1$ gravity and $\mathbb{R} \times S^{3}$. In all these models, only discrete time translations are possible, a result known before.
\diamond One striking consequence of quantised time translations is that even though a time independent Hamiltonian is an observable, in scattering processes, it is conserved only modulo $\frac{2 \pi}{\theta}$, where θ is the noncommutative parameter.
\diamond Scattering theory is also formulated and an approach to quantum field theory is outlined nep-th0410067, HEP 0411(2004) 068.
\diamond But for the moment we will concentrate on only the noncommutative cylinder.

Noncommutative cylinder $\mathcal{A}_{\theta}\left(\mathbb{R} \times S^{1}\right)$

\diamond It is generated by \hat{x}_{0} and $e^{-i \hat{x}_{1}}$ with the relation

$$
\left[\hat{x}_{0}, e^{-i \hat{x}_{1}}\right]=\theta e^{-i \hat{x}_{1}}
$$

Noncommutative cylinder $\mathcal{A}_{\theta}\left(\mathbb{R} \times S^{1}\right)$

\diamond It is generated by \hat{x}_{0} and $e^{-i \hat{x}_{1}}$ with the relation

$$
\left[\hat{x}_{0}, e^{-i \hat{x}_{1}}\right]=\theta e^{-i \hat{x}_{1}}
$$

\diamond For $\theta=0$, there is a close relation between $C^{\infty}(\mathbb{R} \times \mathbb{R})$ and the functions $C^{\infty}\left(\mathbb{R} \times S^{1}\right)$ on a cylinder. The former is generated by coordinate functions \hat{x}_{0} and \hat{x}_{1}, and the latter by \hat{x}_{0} and $e^{i \hat{x}_{1}}, e^{i \hat{x}_{1}}$ being invariant under the 2π-shifts $\hat{x}_{1} \rightarrow \hat{x}_{1} \pm 2 \pi$.

Noncommutative cylinder $\mathcal{A}_{\theta}\left(\mathbb{R} \times S^{1}\right)$

\diamond It is generated by \hat{x}_{0} and $e^{-i \hat{x}_{1}}$ with the relation

$$
\left[\hat{x}_{0}, e^{-i \hat{x}_{1}}\right]=\theta e^{-i \hat{x}_{1}}
$$

\diamond For $\theta=0$, there is a close relation between $C^{\infty}(\mathbb{R} \times \mathbb{R})$ and the functions $C^{\infty}\left(\mathbb{R} \times S^{1}\right)$ on a cylinder. The former is generated by coordinate functions \hat{x}_{0} and \hat{x}_{1}, and the latter by \hat{x}_{0} and $e^{i \hat{x}_{1}}$, $e^{i \hat{x}_{1}}$ being invariant under the 2π-shifts $\hat{x}_{1} \rightarrow \hat{x}_{1} \pm 2 \pi$.
\diamond Following this idea, we can regard the noncommutative $\mathbb{R} \times S^{1}$ algebra $\mathcal{A}_{\theta}\left(\mathbb{R} \times S^{1}\right)$ as generated by \hat{x}_{0} and $e^{i \hat{x}_{1}}$ with the defining relation $e^{i \hat{x}_{1}} \hat{x}_{0}=\hat{x}_{0} e^{i \hat{x}_{1}}+\theta e^{i \hat{x}_{1}}$,

Noncommutative cylinder $\mathcal{A}_{\theta}\left(\mathbb{R} \times S^{1}\right)$

\diamond For the noncommutative cylinder we get:

$$
e^{-i \frac{2 \pi}{\theta} \hat{x}_{0}} e^{i \hat{x}_{1}} e^{i \frac{2 \pi}{\theta} \hat{x}_{0}}=e^{i \hat{x}_{1}}
$$

Noncommutative cylinder $\mathcal{A}_{\theta}\left(\mathbb{R} \times S^{1}\right)$

\diamond For the noncommutative cylinder we get:

$$
e^{-i \frac{2 \pi}{\theta} \hat{x}_{0}} e^{i \hat{x}_{1}} e^{i \frac{2 \pi}{\theta} \hat{x}_{0}}=e^{i \hat{x}_{1}}
$$

\diamond Hence in an IRR,

$$
e^{-i \frac{2 \pi}{\theta} \hat{x}_{0}}=e^{-i \varphi} \mathbb{I}
$$

Noncommutative cylinder $\mathcal{A}_{\theta}\left(\mathbb{R} \times S^{1}\right)$

\diamond For the noncommutative cylinder we get:

$$
e^{-i \frac{2 \pi}{\theta} \hat{x}_{0}} e^{i \hat{x}_{1}} e^{i \frac{2 \pi}{\theta} \hat{x}_{0}}=e^{i \hat{x}_{1}}
$$

\diamond Hence in an IRR,

$$
e^{-i \frac{2 \pi}{\theta} \hat{x}_{0}}=e^{-i \varphi} \mathbb{I}
$$

\diamond so that for the spectrum spec \hat{x}_{0} of \hat{x}_{0} in an IRR, we have,

$$
\operatorname{spec} \hat{x}_{0}=\theta \mathbb{Z}+\frac{\theta \varphi}{2 \pi}=\theta\left(\mathbb{Z}+\frac{\varphi}{2 \pi}\right) \equiv\left\{\theta\left(n+\frac{\varphi}{2 \pi}\right): n \in \mathbb{Z}\right\} .
$$

Noncommutative cylinder....

\diamond We can realise $\mathcal{A}_{\theta}\left(\mathbb{R} \times S^{1}\right)$ irreducibly in the auxiliary Hilbert space $L^{2}\left(S^{1}, d x_{1}\right)$. It has the scalar product given by

$$
(\alpha, \beta)=\int_{0}^{2 \pi} d x_{1} \alpha^{*}\left(e^{i x_{1}}\right) \beta\left(e^{i x_{1}}\right), \alpha, \beta \in L^{2}\left(S^{1}, d x_{1}\right) .
$$

Noncommutative cylinder....

\diamond We can realise $\mathcal{A}_{\theta}\left(\mathbb{R} \times S^{1}\right)$ irreducibly in the auxiliary Hilbert space $L^{2}\left(S^{1}, d x_{1}\right)$. It has the scalar product given by

$$
(\alpha, \beta)=\int_{0}^{2 \pi} d x_{1} \alpha^{*}\left(e^{i x_{1}}\right) \beta\left(e^{i x_{1}}\right), \alpha, \beta \in L^{2}\left(S^{1}, d x_{1}\right) .
$$

\diamond On this space, $e^{i \hat{x}_{1}}$ acts by evaluation map,

$$
\left(e^{i \hat{x}_{1}} \alpha\right)\left(e^{i x_{1}}\right)=e^{i x_{1}} \alpha\left(e^{i x_{1}}\right)
$$

while \hat{x}_{0} / θ acts like the $\theta=0$ momentum with domain $D_{\varphi}\left(\hat{p}_{1}\right)$.

Noncommutative cylinder....

\diamond We can realise $\mathcal{A}_{\theta}\left(\mathbb{R} \times S^{1}\right)$ irreducibly in the auxiliary Hilbert space $L^{2}\left(S^{1}, d x_{1}\right)$. It has the scalar product given by

$$
(\alpha, \beta)=\int_{0}^{2 \pi} d x_{1} \alpha^{*}\left(e^{i x_{1}}\right) \beta\left(e^{i x_{1}}\right), \alpha, \beta \in L^{2}\left(S^{1}, d x_{1}\right)
$$

\diamond On this space, $e^{i \hat{x}_{1}}$ acts by evaluation map,

$$
\left(e^{i \hat{x}_{1}} \alpha\right)\left(e^{i x_{1}}\right)=e^{i x_{1}} \alpha\left(e^{i x_{1}}\right)
$$

while \hat{x}_{0} / θ acts like the $\theta=0$ momentum with domain $D_{\varphi}\left(\hat{p}_{1}\right)$.
\diamond Now because of the spectral result, $e^{i\left(\omega+\frac{2 \pi}{\theta}\right) \hat{x}_{0}}=e^{i \varphi} e^{i \omega \hat{x}_{0}}$

Noncommutative cylinder....

\diamond Thus elements of $\mathcal{A}_{\theta}\left(\mathbb{R} \times S^{1}\right)$ are quasiperiodic in ω and we can restrict ω to its fundamental domain:

$$
\omega \in\left[-\frac{\pi}{\theta}, \frac{\pi}{\theta}\right]
$$

Noncommutative cylinder....

\diamond Thus elements of $\mathcal{A}_{\theta}\left(\mathbb{R} \times S^{1}\right)$ are quasiperiodic in ω and we can restrict ω to its fundamental domain:

$$
\omega \in\left[-\frac{\pi}{\theta}, \frac{\pi}{\theta}\right]
$$

\diamond The general element of $\mathcal{A}_{\theta}\left(\mathbb{R} \times S^{1}, e^{i \frac{\varphi}{2 \pi}}\right)$ is thus

$$
\hat{\alpha}=\sum_{n \in \mathbb{Z}} \int_{-\frac{\pi}{\theta}}^{+\frac{\pi}{\theta}} d \omega \tilde{\alpha}_{n}(\omega) e^{i n \hat{x}_{1}} e^{i \omega \hat{x}_{0}}
$$

Noncommutative cylinder....

\diamond Thus elements of $\mathcal{A}_{\theta}\left(\mathbb{R} \times S^{1}\right)$ are quasiperiodic in ω and we can restrict ω to its fundamental domain:

$$
\omega \in\left[-\frac{\pi}{\theta}, \frac{\pi}{\theta}\right]
$$

\diamond The general element of $\mathcal{A}_{\theta}\left(\mathbb{R} \times S^{1}, e^{i \frac{\varphi}{2 \pi}}\right)$ is thus

$$
\hat{\alpha}=\sum_{n \in \mathbb{Z}} \int_{-\frac{\pi}{\theta}}^{+\frac{\pi}{\theta}} d \omega \tilde{\alpha}_{n}(\omega) e^{i n \hat{x}_{1}} e^{i \omega \hat{x}_{0}}
$$

\diamond The symbol of $\hat{\alpha}$ is a function α on $\theta\left(\mathbb{Z}+\frac{\varphi}{2 \pi}\right) \times S^{1}$: $\alpha: \theta\left(\mathbb{Z}+\frac{\varphi}{2 \pi}\right) \times S^{1} \rightarrow \mathbb{C}$.

Positive map \& innerproduct..

\diamond and is defined by:

$$
\alpha\left(\theta\left(m+\frac{\varphi}{2 \pi}\right), e^{i x_{1}}\right)=\sum_{n \in \mathbb{Z}} \int_{-\frac{\pi}{\theta}}^{+\frac{\pi}{\theta}} d \omega \tilde{\alpha}_{n}(\omega) e^{i n x_{1}} e^{i \omega \theta\left(m+\frac{\varphi}{2 \pi}\right)} .
$$

Positive map \& innerproduct..

\diamond and is defined by:
$\diamond \hat{\alpha}$ determines $\tilde{\alpha}_{n}$ and hence α uniquely, so that the $\operatorname{map} \hat{\alpha} \rightarrow \alpha$ is well-defined. Converse is also true.

Positive map \& innerproduct..

\diamond and is defined by:

$$
\alpha\left(\theta\left(m+\frac{\varphi}{2 \pi}\right), e^{i x_{1}}\right)=\sum_{n \in \mathbb{Z}} \int_{-\frac{\pi}{\theta}}^{p+\frac{\pi}{\theta}} d \omega \tilde{\alpha}_{n}(\omega) e^{i n x_{1}} e^{i \omega \theta\left(m+\frac{\varphi}{2 \pi}\right)}
$$

$\diamond \hat{\alpha}$ determines $\tilde{\alpha}_{n}$ and hence α uniquely, so that the map $\hat{\alpha} \rightarrow \alpha$ is well-defined. Converse is also true.
\bullet Positive map is $S_{\theta\left(m+\frac{\varphi}{2 \pi}\right)}$:

$$
S_{\theta\left(m+\frac{\varphi}{2 \pi}\right)}(\hat{\alpha})=\int_{0}^{2 \pi} d x_{1} \alpha\left(\theta\left(m+\frac{\varphi}{2 \pi}\right), e^{i x_{1}}\right) .
$$

Positive map \& innerproduct..

\diamond We then have, for inner product,

$$
(\hat{\alpha}, \hat{\beta})_{\theta\left(m+\frac{\varphi}{2 \pi}\right)}=S_{\theta\left(m+\frac{\varphi}{2 \pi}\right)}\left(\hat{\alpha}^{*} \hat{\beta}\right)
$$

Positive map \& innerproduct..

\diamond We then have, for inner product,

$$
(\hat{\alpha}, \hat{\beta})_{\theta\left(m+\frac{\varphi}{2 \pi}\right)}=S_{\theta\left(m+\frac{\varphi}{2 \pi}\right)}\left(\hat{\alpha}^{*} \hat{\beta}\right)
$$

- There are other possibilities for inner product such as the one based on coherent states. The equivalence of theories based on different inner products is discussed in our earliar work.

Positive map \& innerproduct..

\diamond We then have, for inner product,

$$
(\hat{\alpha}, \hat{\beta})_{\theta\left(m+\frac{\varphi}{2 \pi}\right)}=S_{\theta\left(m+\frac{\varphi}{2 \pi}\right)}\left(\hat{\alpha}^{*} \hat{\beta}\right)
$$

- There are other possibilities for inner product such as the one based on coherent states. The equivalence of theories based on different inner products is discussed in our earliar work.
- We can infer the spectrum of the momentum operator \hat{P}_{1} when it acts on $\mathcal{A}_{\theta}\left(\mathbb{R} \times S^{1}, e^{i \frac{\varphi}{2 \pi}}\right)$.

Momentum....

\diamond For the construction of a Hilbert space, we do not need this algebra, it is enough to have an $\mathcal{A}_{\theta}\left(\mathbb{R} \times S^{1}, e^{i \frac{\varphi}{2 \pi}}\right)$ -module which can be consistently treated.

Momentum....

\diamond For the construction of a Hilbert space, we do not need this algebra, it is enough to have an $\mathcal{A}_{\theta}\left(\mathbb{R} \times S^{1}, e^{i \frac{\varphi}{2 \pi}}\right)$ -module which can be consistently treated.
\diamond Such a module is $\mathcal{A}_{\theta}\left(\mathbb{R} \times S^{1}, e^{i \frac{\varphi}{2 \pi}}, e^{i \frac{\psi}{2 \pi}}\right)=$

$$
\left\langle\hat{\gamma}=e^{i \frac{\psi}{2 \pi} \hat{x}_{1}} \sum_{n \in \mathbb{Z}} \int_{-\frac{\pi}{\theta}}^{\frac{\pi}{\theta}} d \omega \tilde{\gamma}_{n}(\omega) e^{i n \hat{x}_{1}} e^{i \omega \hat{x}_{0}}\right\rangle .
$$

Momentum....

\diamond For the construction of a Hilbert space, we do not need this algebra, it is enough to have an $\mathcal{A}_{\theta}\left(\mathbb{R} \times S^{1}, e^{i \frac{\varphi}{2 \pi}}\right)$ -module which can be consistently treated.
\diamond Such a module is $\mathcal{A}_{\theta}\left(\mathbb{R} \times S^{1}, e^{i \frac{\varphi}{2 \pi}}, e^{i \frac{\psi}{2 \pi}}\right)=$

$$
\left\langle\hat{\gamma}=e^{i \frac{\psi}{2 \pi} \hat{x}_{1}} \sum_{n \in \mathbb{Z}} \int_{-\frac{\pi}{\theta}}^{\frac{\pi}{\theta}} d \omega \tilde{\gamma}_{n}(\omega) e^{i n \hat{x}_{1}} e^{i \omega \hat{x}_{0}}\right\rangle .
$$

\diamond The eigenvalues of \hat{P}_{1} are now shifted by $\frac{\psi}{2 \pi}$:

$$
\hat{P}_{1} e^{i \frac{\psi}{2 \pi} \hat{x}_{1}} e^{i n \hat{x}_{1}}=\left(n+\frac{\psi}{2 \pi}\right) e^{i \frac{\psi}{2 \pi} \hat{x}_{1}} e^{i n \hat{x}_{1}}, n \in \mathbb{Z}
$$

The Schrödinger constraint

\diamond The inner product is still like

$$
(\hat{\gamma}, \hat{\delta})_{\theta\left(m+\frac{\varphi}{2 \pi}\right)}=S_{\theta\left(m+\frac{\varphi}{2 \pi}\right)}\left(\hat{\gamma}^{*} \hat{\delta}\right) .
$$

The Schrödinger constraint

\diamond The inner product is still like

$$
(\hat{\gamma}, \hat{\delta})_{\theta\left(m+\frac{\varphi}{2 \pi}\right)}=S_{\theta\left(m+\frac{\varphi}{2 \pi}\right)}\left(\hat{\gamma}^{*} \hat{\delta}\right)
$$

\diamond We will discuss only time independent Hamiltonians: Since

$$
\partial_{x_{0}} e^{i \omega \hat{x}_{0}}=-\omega e^{i \omega \hat{x}_{0}}
$$

is not quasiperiodic in ω, continuous time translations and the Schrödinger constraint in the original form cannot be defined on $\mathcal{A}_{\theta}\left(\mathbb{R} \times S^{1}\right)$.

The Schrödinger constraint

\diamond The inner product is still like

$$
(\hat{\gamma}, \hat{\delta})_{\theta\left(m+\frac{\varphi}{2 \pi}\right)}=S_{\theta\left(m+\frac{\varphi}{2 \pi}\right)}\left(\hat{\gamma}^{*} \hat{\delta}\right)
$$

\diamond We will discuss only time independent Hamiltonians: Since

$$
\partial_{x_{0}} e^{i \omega \hat{x}_{0}}=-\omega e^{i \omega \hat{x}_{0}}
$$

is not quasiperiodic in ω, continuous time translations and the Schrödinger constraint in the original form cannot be defined on $\mathcal{A}_{\theta}\left(\mathbb{R} \times S^{1}\right)$.
\diamond But translation of \hat{x}_{0} by $\pm \theta$ leaves its spectrum intact. Hence the conventional Schrödinger constraint is thus changed to a discrete Schrödinger constraint.

The Schrödinger constraint

\diamond The family of vector states constrained by the discrete Schrödinger equation is

$$
\begin{gathered}
\tilde{\mathcal{H}}_{\theta}\left(e^{i \frac{\varphi}{2 \pi}}, e^{i \frac{\psi}{2 \pi}}\right)= \\
\left\{\hat{\psi} \in \mathcal{A}_{\theta}\left(\mathbb{R} \times S^{1}, e^{i \frac{\varphi}{2 \pi}}, e^{i \frac{\psi}{2 \pi}}\right): e^{-i \theta\left(i \partial_{x_{0}}\right)} \hat{\psi}=e^{-i \theta \hat{H}} \hat{\psi}\right\} .
\end{gathered}
$$

The Schrödinger constraint

\diamond The family of vector states constrained by the discrete Schrödinger equation is

$$
\begin{gathered}
\tilde{\mathcal{H}}_{\theta}\left(e^{i \frac{\varphi}{2 \pi}}, e^{i \frac{\omega}{2 \pi}}\right)= \\
\left.\left\{\hat{\psi} \in \mathcal{A}_{\theta}\left(\mathbb{R} \times S^{1}, e^{i \frac{\varphi}{2 \pi}}, e^{i \frac{\omega}{2 \pi}}\right): e^{-i \theta\left(i \partial_{x_{0}}\right.}\right) \hat{\psi}=e^{-i \theta \hat{H}} \hat{\psi}\right\} .
\end{gathered}
$$

- It has solutions

$$
\hat{\psi}=e^{-i \hat{x}_{0}^{R} \hat{H}\left(e^{i \hat{x}_{1}^{L}}, \hat{P}_{1}\right)} e^{i \frac{\psi}{2 \pi} \hat{x}_{1}} \hat{\chi}\left(e^{i \hat{x}_{1}}\right)
$$

The Schrödinger constraint

\diamond The family of vector states constrained by the discrete Schrödinger equation is

$$
\begin{gathered}
\tilde{\mathcal{H}}_{\theta}\left(e^{i \frac{\varphi}{2 \pi}}, e^{i \frac{\omega}{2 \pi}}\right)= \\
\left.\left\{\hat{\psi} \in \mathcal{A}_{\theta}\left(\mathbb{R} \times S^{1}, e^{i \frac{\varphi}{2 \pi}}, e^{i \frac{\nu}{2 \pi}}\right): e^{-i \theta\left(i \partial_{x_{0}}\right.}\right) \hat{\psi}=e^{-i \theta \hat{H}} \hat{\psi}\right\} .
\end{gathered}
$$

\diamond It has solutions

$$
\hat{\psi}=e^{-i \hat{x}_{0}^{R} \hat{H}\left(e^{i \hat{x}_{1}^{L}}, \hat{P}_{1}\right)} e^{i \frac{\psi}{2 \pi} \hat{x}_{1}} \hat{\chi}\left(e^{i \hat{x}_{1}}\right)
$$

- See JHEP 11(2004)068 for further details

