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noncommutative spacetime & unitary ...

⋄ We will start with 1 + 1 dimensional theory. And look at
the spacetime commutators of the form:

[ x̂µ, x̂ν ] = iθǫµνI
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noncommutative spacetime & unitary ...

⋄ We will start with 1 + 1 dimensional theory. And look at
the spacetime commutators of the form:

[ x̂µ, x̂ν ] = iθǫµνI

⋄ Its usually remarked that this leads to non unitary
quantum theory. We believe this is due to incorrect
appreciation of the role of "Time".

⋄ But the correct statement is if a group of
transformations cannot be implemented on the algebra
Aθ

(
R2

)
generated by x̂µ with our relation then it will

not be a symmetry Even this should be improved - will come back later
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noncommutative spacetime ...

⋄ We readily see that spacetime translations are
automorphisms of Aθ

(
R2

)
: With U(~a)x̂µ = x̂µ + aµ we

see that,

[ U(~a)x̂µ,U(~a)x̂ν ] = iθεµν .
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see that,
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noncommutative spacetime ...

⋄ We readily see that spacetime translations are
automorphisms of Aθ

(
R2

)
: With U(~a)x̂µ = x̂µ + aµ we

see that,

[ U(~a)x̂µ,U(~a)x̂ν ] = iθεµν .

⋄ The time-translation automorphism is:

U(τ) := U ((τ, 0))

⋄ Without the time-translation automorphism, we cannot
formulate conventional quantum physics.
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noncommutative spacetime..

⋄ The infinitesimal generators of U(~a) can be obtained
from

U(~a) = e−ia0P̂0+ia1P̂1 .
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noncommutative spacetime..

⋄ The infinitesimal generators of U(~a) can be obtained
from
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noncommutative spacetime..

⋄ The infinitesimal generators of U(~a) can be obtained
from

U(~a) = e−ia0P̂0+ia1P̂1 .

⋄ Then we have

P̂0 = −
1

θ
ad x̂1 , P̂1 = −

1

θ
ad x̂0

ad x̂µâ ≡ [x̂µ, â] , â ∈ Aθ

(
R

2
)
.
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⋄ It is a special feature of two dimensions that the (2 + 1)
connected Lorentz group is an inner automorphism
group
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5



noncommutative spacetime..

⋄ It is a special feature of two dimensions that the (2 + 1)
connected Lorentz group is an inner automorphism
group

⋄ Its generators are adĴ3 and adK̂a ,
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1

)
,

,

,

5



noncommutative spacetime..

⋄ It is a special feature of two dimensions that the (2 + 1)
connected Lorentz group is an inner automorphism
group

⋄ Its generators are adĴ3 and adK̂a ,

⋄

Ĵ3 =
1

4θ

(
x̂2

0 + x̂2
1

)
,

K̂1 =
1

4θ
(x̂0x̂1 + x̂1x̂0) ,

,
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noncommutative spacetime..

⋄ It is a special feature of two dimensions that the (2 + 1)
connected Lorentz group is an inner automorphism
group

⋄ Its generators are adĴ3 and adK̂a ,

⋄

Ĵ3 =
1

4θ

(
x̂2

0 + x̂2
1

)
,

K̂1 =
1

4θ
(x̂0x̂1 + x̂1x̂0) ,

K̂2 =
1

4θ

(
x̂2

0 − x̂2
1

)
,
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noncommutative spacetime..

⋄ Causality: It is impossible to localize (the
representation of) “coordinate” time x̂0 in Aθ

(
R

2
)

sharply. This leads to failure of causality Chaichian et al.
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R
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sharply. This leads to failure of causality Chaichian et al.

⋄ The following important point was emphasised to us by
Doplicher. In quantum mechanics, if p̂ is momentum,
exp(iξp̂) is spatial translation by amount ξ. This ξ is not
the eigenvalue of the position operator x̂. In the same
way, the amount τ of time translation is not “coordinate
time”, the eigenvalue of x̂0. It makes sense to talk
about a state and its translate by U(τ)
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⋄ Causality: It is impossible to localize (the
representation of) “coordinate” time x̂0 in Aθ

(
R

2
)

sharply. This leads to failure of causality Chaichian et al.

⋄ The following important point was emphasised to us by
Doplicher. In quantum mechanics, if p̂ is momentum,
exp(iξp̂) is spatial translation by amount ξ. This ξ is not
the eigenvalue of the position operator x̂. In the same
way, the amount τ of time translation is not “coordinate
time”, the eigenvalue of x̂0. It makes sense to talk
about a state and its translate by U(τ)

⋄ Concepts like duration of an experiment for θ = 0 are
expressed using U(τ). They carry over to the
noncommutative case too.
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Representation theory..

⋄ Observables, states and dynamics of quantum theory
are to be based on the algebra Aθ

(
R

2
)
. Here we

develop the formalism for their construction.
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)
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⋄ To each α̂ ∈ Aθ
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regular representations α̂L and α̂R,

α̂Lβ̂ = α̂β̂ , α̂Rβ̂ = β̂α̂ , β̂ ∈ Aθ

(
R

2
)
,

with α̂Lβ̂L =
(
α̂β̂

)L
and α̂Rβ̂R =

(
β̂α̂

)R
. The carrier

space of this representation is Aθ

(
R

2
)

itself.

7



Representation theory..

⋄ Observables, states and dynamics of quantum theory
are to be based on the algebra Aθ

(
R

2
)
. Here we

develop the formalism for their construction.

⋄ To each α̂ ∈ Aθ

(
R

2
)
, we associate its left and right

regular representations α̂L and α̂R,

α̂Lβ̂ = α̂β̂ , α̂Rβ̂ = β̂α̂ , β̂ ∈ Aθ

(
R

2
)
,

with α̂Lβ̂L =
(
α̂β̂

)L
and α̂Rβ̂R =

(
β̂α̂

)R
. The carrier

space of this representation is Aθ

(
R

2
)

itself.

⋄ An “inner”product on Aθ

(
R

2
)

is needed for an eventual
construction of a Hilbert space.
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Representation theory..

⋄ Consider a map χ : Aθ

(
R

2
)
→ C which is also

positive,i.e.,

χ (α̂∗α̂) ≥ 0 .
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Representation theory..

⋄ Consider a map χ : Aθ

(
R

2
)
→ C which is also

positive,i.e.,

χ (α̂∗α̂) ≥ 0 .

⋄ Then we can set:〈
α̂, β̂

〉
= χ

(
α̂∗β̂

)
.

⋄ It will be a scalar product if χ (α̂∗α) = 0 implies α̂ = 0. If
that is not the case, it is necessary to eliminate null
vectors.

⋄ We illustrate these ideas briefly in the context of the
commutative case, when θ = 0
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The commutative case

⋄ The algebra C in the commutative case is
A0

(
R

2
)

= C∞ (R × R),
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obtained by integrating i ψ in x1 at “time” t:
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The commutative case

⋄ The algebra C in the commutative case is
A0

(
R

2
)

= C∞ (R × R),

⋄ There is no distinction now between α̂L and α̂R:
α̂L = α̂R.

⋄ There is a family of positive maps χt of interest
obtained by integrating i ψ in x1 at “time” t:

χt(ψ) =

∫
dx1 ψ(t, x1) ,

⋄ We get a family of spaces Ct with a positive-definite
sesquilinear form (. , .)t:

(ψ,ϕ)t =

∫
dx1 ψ

∗(t, x1)ϕ(t, x1) .
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The commutative case

⋄ Every function α̂ which vanishes at time t is a
two-sided ideal Iθ=0

t = I0
t of C. As elements of Ct, they

become null vectors.
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The commutative case

⋄ Every function α̂ which vanishes at time t is a
two-sided ideal Iθ=0

t = I0
t of C. As elements of Ct, they

become null vectors.

⋄ As in the GNS construction Haag, we can quotient by
these vectors and work with Ct/N

0
t .

⋄ The completion Ct/N 0
t of Ct/N

0
t in this scalar product

gives a Hilbert space Ĥ0
t

⋄ For elements ψ + N 0
t and χ+ N 0

t in Ct/N
0
t , the scalar

product is
(
ψ + N 0

t , χ+ N 0
t

)
t
= (ψ, χ)t .

10



The commutative case

⋄ The quantum mechanical Hilbert space however is not

Ĥ0
t .
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The commutative case

⋄ The quantum mechanical Hilbert space however is not

Ĥ0
t .

⋄ It is constructed in a different way, starting from a

subspace H̃0,t ⊂ Ct which contains only {0} as the null

vector: H̃0,t ∩N 0
t = {0}

⋄ Then χt is a good scalar product on H̃0,t and the
quantum mechanical Hilbert space is given by

H0
t = H̃0,t, the completion of H̃0,t.

⋄ The subspace H̃0,t depends on the Hamiltonian H and
is chosen as follows.
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The commutative case

⋄ Let H be a time-independent Hamiltonian on
commutative spacetime, self-adjoint on the standard
quantum mechanical Hilbert space L2 (R).
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The commutative case

⋄ Let H be a time-independent Hamiltonian on
commutative spacetime, self-adjoint on the standard
quantum mechanical Hilbert space L2 (R).

⋄ We now pick the subspace H̃0,t of Ct by requiring that
vectors in Ct obey the time-dependent Schrödinger
equation:

H̃0,t = {ψ ∈ Ct : (i∂x0
−H)ψ(x0, x1) = 0} .

⋄ The operator i∂x0
is not hermitian on all of Ct:

(ψ, i∂x0
χ)t= (i∂x0

ψ, χ)t for generic ψ, χ ∈ H̃0,t ,

⋄ but on H̃0,t, it fulfills this property:
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The commutative case

⋄ We notice since,

ψ(x0 + τ, x1) =
(
e−iτ(i∂x0)ψ

)
(x0, x1)

=
(
e−iτHψ

)
(x0, x1) ,

time evolution preserves the norm of ψ ∈ H̃0,t.
Therefore if it vanishes at x0 = t, it vanishes identically

and is the zero element of H̃0,t: the only null vector in

H̃0,t is 0:
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The commutative case

⋄ We notice since,

ψ(x0 + τ, x1) =
(
e−iτ(i∂x0)ψ

)
(x0, x1)

=
(
e−iτHψ

)
(x0, x1) ,

time evolution preserves the norm of ψ ∈ H̃0,t.
Therefore if it vanishes at x0 = t, it vanishes identically

and is the zero element of H̃0,t: the only null vector in

H̃0,t is 0:

⋄ The completion of H̃0,t is the quantum Hilbert space

H0
t . There is no convenient inclusion of H0

t in Ĥ0
t .
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The commutative case

⋄ Under time evolution by amount τ , ψ becomes

e−iτHψ = e−i(x̂0+τ)Hψ0 ∈ H̃0,t .
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e−iτHψ = e−i(x̂0+τ)Hψ0 ∈ H̃0,t .

where ψ0 is a constant function of x0 so that
i∂x0

ψ0 = 0. This conceptual difference between
coordinate time x̂0 and time translation τ is crucial for
NC spacetime.
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The commutative case

⋄ Under time evolution by amount τ , ψ becomes

e−iτHψ = e−i(x̂0+τ)Hψ0 ∈ H̃0,t .

where ψ0 is a constant function of x0 so that
i∂x0

ψ0 = 0. This conceptual difference between
coordinate time x̂0 and time translation τ is crucial for
NC spacetime.

⋄ An observable K̂ has to respect the Schrödinger

constraint and leave H̃0,t (and hence H0
t ) invariant.

This means that [
i∂x0

−H, K̂
]

= 0 .
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The commutative case

⋄ Under time translation, x̂0 in K̂ shifts to x̂0 + τ as it
should:

K̂(τ) = e−iτHK̂e+iτH = e−i(x̂0+τ)H L̂e+i(x̂0+τ)H .
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should:
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where L̂ is defined by:
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The commutative case

⋄ Under time translation, x̂0 in K̂ shifts to x̂0 + τ as it
should:

K̂(τ) = e−iτHK̂e+iτH = e−i(x̂0+τ)H L̂e+i(x̂0+τ)H .

where L̂ is defined by:

K̂(0) = e−ix̂0H L̂e+ix̂0H

⋄ What we have described above leads to conventional
physics. As expected x̂0 is not an observable as it does
not commute with i∂x0

−H:

[x̂0, i∂x0
−H] = −iI .
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The noncommutative Case

⋄ The above discussion shows that for quantum theory,
what we need are: (1) a suitable inner product on
Aθ

(
R

2
)
; (2) a Schrödinger constraint on Aθ
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R

2
)
; and

(3) a Hamiltonian Ĥ and observables which act on the
constrained subspace of Aθ

(
R

2
)
.
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The noncommutative Case

⋄ The above discussion shows that for quantum theory,
what we need are: (1) a suitable inner product on
Aθ

(
R

2
)
; (2) a Schrödinger constraint on Aθ

(
R

2
)
; and

(3) a Hamiltonian Ĥ and observables which act on the
constrained subspace of Aθ

(
R

2
)
.

⋄ We also require that (1) is compatible with the

self-adjointness of Ĥ and classically real observables.

⋄ We now consider these one by one. 16



The symbol calculus

⋄ The first inner product is based on symbol calculus. If
α̂ ∈ Aθ

(
R

2
)
, we write it as

α̂ =

∫
d2k α̃(k)eik1x̂1eik0x̂0 ,

and associate the symbol αS with α̂
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The symbol calculus

⋄ The first inner product is based on symbol calculus. If
α̂ ∈ Aθ

(
R

2
)
, we write it as

α̂ =

∫
d2k α̃(k)eik1x̂1eik0x̂0 ,

and associate the symbol αS with α̂ where

αS(x0, x1) =

∫
d2k α̃(k)eik1x1eik0x0 .

⋄ The symbol is a function on R
2. It is NOT the MOYAL

symbol. Using this symbol, we can define a positive
map St by

St (α̂) =

∫
dx1 αS(t, x1) .

17



The Schrödinger constraint

⋄ The noncommutative analogue “i ∂
∂x0

” is

i
∂

∂x0
≡ P̂0 = −

1

θ
ad x̂1 ,
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” is
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∂

∂x0
≡ P̂0 = −

1

θ
ad x̂1 ,

⋄ If the Hamiltonian Ĥ is time-independent,

[i∂x0
, Ĥ] = 0

⋄ We can write Hamiltonian as Ĥ = Ĥ
(
x̂L1 , P̂1

)
.
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The Schrödinger constraint

⋄ The noncommutative analogue “i ∂
∂x0

” is

i
∂

∂x0
≡ P̂0 = −

1

θ
ad x̂1 ,

⋄ If the Hamiltonian Ĥ is time-independent,

[i∂x0
, Ĥ] = 0

⋄ We can write Hamiltonian as Ĥ = Ĥ
(
x̂L1 , P̂1

)
.

⋄ If Ĥ has time-dependence then • is not correct, it will

have x̂L0 , x̂R0 . But x̂L0 = θP̂1 + x̂R1 , so in the

time-dependent case we write Ĥ = Ĥ(x̂R0 , x̂
L
1 , P̂1)

18



The Schrödinger constraint

⋄ The states constrained by the Schrödinger equation is

H̃θ =
{
ψ̂ ∈ Aθ

(
R

2
)

:
(
i∂x0

− Ĥ
)
ψ̂ = 0

}
,
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(
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− Ĥ
)
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⋄ The solutions are easy to construct:

ψ̂ ∈ H̃θ =⇒ ψ̂ = e−i(x̂
R
0 −τI)Ĥ(P̂1,x̂

L
1 )χ̂ (x̂1) •

⋄ If Ĥ depends on x̂R0 , we can easily generalise the
formula

ψ̂ ∈ H̃θ =⇒ ψ̂ = U
(
x̂R0 , τI

)
χ̂ (x̂1)
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The Schrödinger constraint

⋄ The states constrained by the Schrödinger equation is

H̃θ =
{
ψ̂ ∈ Aθ

(
R

2
)

:
(
i∂x0

− Ĥ
)
ψ̂ = 0

}
,

⋄ The solutions are easy to construct:

ψ̂ ∈ H̃θ =⇒ ψ̂ = e−i(x̂
R
0 −τI)Ĥ(P̂1,x̂

L
1 )χ̂ (x̂1)

⋄ If Ĥ depends on x̂R0 , we can easily generalise the
formula

ψ̂ ∈ H̃θ =⇒ ψ̂ = U
(
x̂R0 , τI

)
χ̂ (x̂1)

U
(
x̂R0 , τI

)
= T exp

[
−i

(∫ x0

τI

dτ Ĥ
(
τ, x̂L1 , P̂1

))]∣∣∣∣
x0=x̂R0
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⋄ An alternative useful form for ψ̂ is

ψ̂ = V
(
x̂R0 ,−∞

)
χ̂ (x̂1)
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Some observations

⋄ An alternative useful form for ψ̂ is

ψ̂ = V
(
x̂R0 ,−∞

)
χ̂ (x̂1)

V
(
x̂R0 ,−∞

)
= T exp

[
−i

∫ 0

−∞

dτ Ĥ
(
x̂R0 + τ, x̂L1 , P̂1

)]

where the integral can be defined at the lower limit
using the usual adiabatic cut-off. 20
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V
(
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)
= T exp

[
−i

∫ 0

−∞

dτ Ĥ
(
x̂R0 + τ, x̂L1 , P̂1

)]

where the integral can be defined at the lower limit
using the usual adiabatic cut-off.

⋄ The Hilbert spaces HS
θ and HV

θ based on scalar

products (., .)S and (., .)V are obtained from H̃θ by

completion. Our basic assumption is that Ĥ is
self-adjoint in the chosen scalar product.
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Some observations

⋄ In the passage from H to Ĥ, there is an apparent
ambiguity. We replaced x0 by x̂L0 , but we may be

tempted to replace x0 by x̂R0 . But it is incorrect to

replace x0 by x̂R0 and at the same time x1 by x̂L1 . Time
and space should NOT commute when θ becomes
nonzero whereas x̂R0 and x̂L1 commute.
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replace x0 by x̂R0 and at the same time x1 by x̂L1 . Time
and space should NOT commute when θ becomes
nonzero whereas x̂R0 and x̂L1 commute.

⋄ Note that x̂L0 = −θP̂1 + x̂R0 and that x̂R0 behaves much
like the θ = 0 time x0. Thus if H has time-dependence,

its effect on Ĥ is to induce new momentum-dependent
terms leading to nonlocal (“acausal”) interactions.

⋄ We can construct observables as before and no
complications are encountered.
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A spectral map:

⋄ For θ = 0 let the Hamiltonian be: H = − 1
2m

∂2

∂x2

1

+ V (x̂1)

with eigenstates ψE fulfilling the Schrödinger
constraint:

ψE (x̂0, x̂1) = ϕE(x̂1)e
−iEx̂0 , HϕE = EϕE .
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A spectral map:

⋄ For θ = 0 let the Hamiltonian be: H = − 1
2m

∂2

∂x2

1

+ V (x̂1)

with eigenstates ψE fulfilling the Schrödinger
constraint:

ψE (x̂0, x̂1) = ϕE(x̂1)e
−iEx̂0 , HϕE = EϕE .

⋄ The Hamiltonian Ĥ associated to H for θ 6= 0 is

Ĥ =
P̂ 2

1

2m
+ V (x̂1) .

⋄ Then Ĥ has exactly the same spectrum as H and its

eigenstates ψ̂E are obtained from ψE.

ψ̂E = ϕE(x̂1)e
−iEx̂0 , ĤϕE(x̂1) = EϕE(x̂1) .

22



QFT.....:

⋄ We can also see how to do perturbative qft’s, our
approach can be inferred from the work of Doplicher et

al. We require of Φ̂ that it is a solution of the massive

Klein-Gordon equation:
(

adP̂ 2
0 − adP̂ 2

1 + µ2
)

Φ̂ = 0 .
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⋄ We can also see how to do perturbative qft’s, our
approach can be inferred from the work of Doplicher et

al. We require of Φ̂ that it is a solution of the massive

Klein-Gordon equation:
(

adP̂ 2
0 − adP̂ 2

1 + µ2
)

Φ̂ = 0 .

⋄ The plane wave solutions are

φ̂k = eikx̂1e−iω(k)x̂0 , ω(k)2 − k2 = µ2 .

⋄ So for Φ̂, we write:

Φ̂ =

∫
dk

2ω(k)

[
akφ̂k + a†kφ̂

†
k

]
,

where ak and a†k commute with x̂µ and define

oscillators:
[
ak, a

†
k

]
= 2ω(k)δ(k − k′).

23



QFT.....:

⋄ The “free” field Φ̂ “coinciding with the Heisenberg field
initially” after time translation by amount τ using the

free Schrödinger Hamiltonian Ĥ0 =
∫

dk
2ω(k)a

†
kak ,

becomes

U0(τ)
(
Φ̂

)
= eiτĤ0Φ̂e−iτĤ0 ,
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(
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⋄ The interaction Hamiltonian is accordingly

ĤI (x0) = λ : Sx0
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(
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)
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(
Φ̂4

)
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(
Φ̂

)
= eiτĤ0Φ̂e−iτĤ0 ,

⋄ The interaction Hamiltonian is accordingly

ĤI (x0) = λ : Sx0

(
U0(τ)

(
Φ̂

)4
)

: = λ : Sx0+τ

(
Φ̂4

)
: , λ > 0 ,

where : : denotes the normal ordering of ak and a†k.

⋄ The S-matrix S can be worked out.

24



Quantised evolutions...

⋄ We can easily extend our earliar presentations to the
cylinder, a version related to 2+1 gravity and R × S3. In
all these models, only discrete time translations are
possible, a result known before.
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⋄ We can easily extend our earliar presentations to the
cylinder, a version related to 2+1 gravity and R × S3. In
all these models, only discrete time translations are
possible, a result known before.

⋄ One striking consequence of quantised time
translations is that even though a time independent
Hamiltonian is an observable, in scattering processes,
it is conserved only modulo 2π

θ , where θ is the
noncommutative parameter.

⋄ Scattering theory is also formulated and an approach
to quantum field theory is outlined hep-th/0410067,JHEP 0411(2004) 068.

⋄ But for the moment we will concentrate on only the
noncommutative cylinder.
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Noncommutative cylinder Aθ

(
R × S1

)

⋄ It is generated by x̂0 and e−ix̂1 with the relation
[
x̂0 , e

−ix̂1

]
= θ e−ix̂1 .
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= θ e−ix̂1 .

⋄ For θ = 0, there is a close relation between C∞ (R × R)
and the functions C∞

(
R × S1

)
on a cylinder. The

former is generated by coordinate functions x̂0 and x̂1,
and the latter by x̂0 and eix̂1, eix̂1 being invariant under
the 2π-shifts x̂1 → x̂1 ± 2π.
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⋄ For θ = 0, there is a close relation between C∞ (R × R)
and the functions C∞

(
R × S1

)
on a cylinder. The

former is generated by coordinate functions x̂0 and x̂1,
and the latter by x̂0 and eix̂1, eix̂1 being invariant under
the 2π-shifts x̂1 → x̂1 ± 2π.

⋄ Following this idea, we can regard the noncommutative
R × S1 algebra Aθ

(
R × S1

)
as generated by x̂0 and eix̂1

with the defining relation eix̂1x̂0 = x̂0e
ix̂1 + θeix̂1 ,

26



Noncommutative cylinder Aθ

(
R × S1

)

⋄ For the noncommutative cylinder we get:

e−i
2π
θ
x̂0eix̂1ei

2π
θ
x̂0 = eix̂1 .
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Noncommutative cylinder Aθ

(
R × S1

)

⋄ For the noncommutative cylinder we get:

e−i
2π
θ
x̂0eix̂1ei

2π
θ
x̂0 = eix̂1 .

⋄ Hence in an IRR,

e−i
2π
θ
x̂0 = e−iϕI ,

⋄ so that for the spectrum spec x̂0 of x̂0 in an IRR, we
have,

spec x̂0 = θZ +
θϕ

2π
= θ

(
Z +

ϕ

2π

)
≡

{
θ
(
n+

ϕ

2π

)
: n ∈ Z

}
.

27



Noncommutative cylinder....

⋄ We can realise Aθ

(
R × S1

)
irreducibly in the auxiliary

Hilbert space L2
(
S1, dx1

)
. It has the scalar product

given by

(α, β) =

∫ 2π

0
dx1 α

∗
(
eix1

)
β

(
eix1

)
, α, β ∈ L2

(
S1, dx1

)
.
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given by

(α, β) =

∫ 2π

0
dx1 α

∗
(
eix1

)
β

(
eix1

)
, α, β ∈ L2

(
S1, dx1

)
.

⋄ On this space, eix̂1 acts by evaluation map,
(
eix̂1α

) (
eix1

)
= eix1α

(
eix1

)
,

while x̂0/θ acts like the θ = 0 momentum with domain
Dϕ(p̂1).

⋄ Now because of the spectral result,ei(ω+ 2π
θ )x̂0 = eiϕeiωx̂0

28



Noncommutative cylinder....

⋄ Thus elements of Aθ

(
R × S1

)
are quasiperiodic in ω

and we can restrict ω to its fundamental domain:

ω ∈
[
−
π

θ
,
π

θ

]
.
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⋄ Thus elements of Aθ

(
R × S1

)
are quasiperiodic in ω

and we can restrict ω to its fundamental domain:

ω ∈
[
−
π

θ
,
π

θ

]
.

⋄ The general element of Aθ

(
R × S1 , ei

ϕ

2π

)
is thus

α̂ =
∑

n∈Z

∫ +π
θ

−π
θ

dω α̃n(ω)einx̂1eiωx̂0 ,

⋄ The symbol of α̂ is a function α on θ
(
Z + ϕ

2π

)
× S1:

α : θ
(
Z + ϕ

2π

)
× S1 → C .

29



Positive map & innerproduct..

⋄ and is defined by:

α
(
θ
(
m+

ϕ

2π

)
, eix1

)
=

∑

n∈Z

∫ +π
θ

−π
θ

dω α̃n(ω)einx1eiωθ(m+ ϕ

2π ) .

30



Positive map & innerproduct..

⋄ and is defined by:

α
(
θ
(
m+

ϕ

2π

)
, eix1

)
=

∑

n∈Z

∫ +π
θ

−π
θ

dω α̃n(ω)einx1eiωθ(m+ ϕ

2π ) .

⋄ α̂ determines α̃n and hence α uniquely, so that the
map α̂→ α is well-defined. Converse is also true.
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=

∑

n∈Z

∫ +π
θ

−π
θ

dω α̃n(ω)einx1eiωθ(m+ ϕ

2π ) .

⋄ α̂ determines α̃n and hence α uniquely, so that the
map α̂→ α is well-defined. Converse is also true.

⋄ Positive map is Sθ(m+ ϕ

2π )
:

Sθ(m+ ϕ

2π )
(α̂) =

∫ 2π

0
dx1 α

(
θ
(
m+

ϕ

2π

)
, eix1

)
.

30



Positive map & innerproduct..

⋄ We then have, for inner product,
(
α̂, β̂

)

θ(m+ ϕ

2π )
= Sθ(m+ ϕ

2π )

(
α̂∗β̂

)
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theories based on different inner products is discussed
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⋄ We then have, for inner product,
(
α̂, β̂

)

θ(m+ ϕ

2π )
= Sθ(m+ ϕ

2π )

(
α̂∗β̂

)

⋄ There are other possibilities for inner product such as
the one based on coherent states. The equivalence of
theories based on different inner products is discussed
in our earliar work.

⋄ We can infer the spectrum of the momentum operator

P̂1 when it acts on Aθ

(
R × S1, ei

ϕ

2π

)
.

31



Momentum....

⋄ For the construction of a Hilbert space, we do not need
this algebra, it is enough to have an Aθ

(
R × S1, ei

ϕ

2π

)

-module which can be consistently treated.
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=
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θ
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(
R × S1, ei

ϕ

2π , ei
ψ

2π

)
=

〈
γ̂ = ei

ψ

2π
x̂1

∑

n∈Z

∫ π
θ

−π
θ

dωγ̃n(ω)einx̂1eiωx̂0

〉
.

⋄ The eigenvalues of P̂1 are now shifted by ψ
2π :

P̂1e
i ψ
2π
x̂1einx̂1 =

(
n+

ψ

2π

)
ei

ψ

2π
x̂1einx̂1 , n ∈ Z .
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The Schrödinger constraint

⋄ The inner product is still like

(γ̂, δ̂)θ(m+ ϕ

2π )
= Sθ(m+ ϕ

2π )
(γ̂∗δ̂) .
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The Schrödinger constraint

⋄ The inner product is still like

(γ̂, δ̂)θ(m+ ϕ

2π )
= Sθ(m+ ϕ

2π )
(γ̂∗δ̂) .

⋄ We will discuss only time independent Hamiltonians:
Since

∂x0
eiωx̂0 = −ωeiωx̂0

is not quasiperiodic in ω, continuous time translations
and the Schrödinger constraint in the original form
cannot be defined on Aθ

(
R × S1

)
.
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⋄ The inner product is still like

(γ̂, δ̂)θ(m+ ϕ

2π )
= Sθ(m+ ϕ

2π )
(γ̂∗δ̂) .

⋄ We will discuss only time independent Hamiltonians:
Since

∂x0
eiωx̂0 = −ωeiωx̂0

is not quasiperiodic in ω, continuous time translations
and the Schrödinger constraint in the original form
cannot be defined on Aθ

(
R × S1

)
.

⋄ But translation of x̂0 by ±θ leaves its spectrum intact.
Hence the conventional Schrödinger constraint is thus
changed to a discrete Schrödinger constraint.
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The Schrödinger constraint

⋄ The family of vector states constrained by the discrete
Schrödinger equation is

H̃θ

(
ei

ϕ

2π , ei
ψ

2π

)
=

{
ψ̂ ∈ Aθ

(
R × S1, ei

ϕ

2π , ei
ψ

2π

)
: e−iθ(i∂x0)ψ̂ = e−iθĤ ψ̂

}
.
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The Schrödinger constraint

⋄ The family of vector states constrained by the discrete
Schrödinger equation is

H̃θ

(
ei

ϕ

2π , ei
ψ

2π

)
=

{
ψ̂ ∈ Aθ

(
R × S1, ei

ϕ

2π , ei
ψ

2π

)
: e−iθ(i∂x0)ψ̂ = e−iθĤ ψ̂

}
.

⋄ It has solutions

ψ̂ = e
−ix̂R0 Ĥ

“

eix̂
L
1 ,P̂1

”

ei
ψ

2π
x̂1χ̂

(
eix̂1

)
,
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)
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“
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”
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,

⋄ See JHEP 11(2004)068 for further details
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