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Motivations.....

⋄ Quantum gravity -at Planck length - folklore- must have
- noncommutative geometric structure - limit of
classical gravity - emerge - commutative geometry of
spacetime we know. Just like:
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~−→0

Q.Physics = Cl.Physics

3



Motivations.....

⋄ Quantum gravity -at Planck length - folklore- must have
- noncommutative geometric structure - limit of
classical gravity - emerge - commutative geometry of
spacetime we know. Just like:

lim
~−→0

Q.Physics = Cl.Physics

⋄ Expectation:

lim
Planck length−→0

Non commutative geometry

=
Commutative Geometry
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Plancklength will bring in enormous energy and
eventually lead to blackholes being created. This will
distort the local geometry so much that quantum
effects would be overwhelming.
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Motivations.....

⋄ Any attempt to localise events to lengths close to
Plancklength will bring in enormous energy and
eventually lead to blackholes being created. This will
distort the local geometry so much that quantum
effects would be overwhelming.

⋄ The above arguments have been posed in two
independent places. (1) Sergio Doplicher’s paper.
(2)Podles lectures on quantum groups - where it is
mentioned that Nahm has posed the questions and the
need to go beyond conventional ideas of geometries.

4



Quote.....

⋄ Infact remarkably difficulties were anticipated atleast a
hundred and fifty years earliar.
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⋄ Infact remarkably difficulties were anticipated atleast a
hundred and fifty years earliar.

⋄ ....it seems that empirical notions on which the metrical
determinations of space are founded, the notion of a
solid body and a ray of light cease to be valid for the
infinitely small. We are therefore quite at liberty to
suppose that the metric relations of space in the
infinitely small do not conform to hypotheses of
geometry; and we ought in fact to suppose it, if we can
thereby obtain a simpler explanation of phenomena....

⋄ The above is from “On the hypotheses which lie at the
bases of geometry”, Bernhard Riemann, 1854 (from
the translation by W K Clifford).
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⋄ Moyal spacetimes are defined by:

[ x̂µ, x̂ν ] = iθµνI

⋄ This can be understood by the introduction of star
product rule in the algebra of functions on R4. The
multiplication map of algebra of functions ( on Moyal
plane) Aθ(R

d) is f ∗ g = mθ(f ⊗ g) = m0(F θ(f ⊗ g))

⋄ where
F θ = e−

i

2
(−i∂µ)Θµν⊗(−i∂ν)

⋄ In commutative spacetime we have pointwise
multiplication m0(Fθ=0(f ⊗ g)).
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QFT in Moyal...

⋄ The algebra Aθ(R
d) of functions on a noncommutative

space can be traced back to quantum mechanics.
Many of the techinques of geometry of quantum
spaces can be used with advantage. However we are
not dealing with inherently quantum mechanical
spaces, but only use the techniques to represent
classical noncommutative spaces.
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⋄ The algebra Aθ(R
d) of functions on a noncommutative

space can be traced back to quantum mechanics.
Many of the techinques of geometry of quantum
spaces can be used with advantage. However we are
not dealing with inherently quantum mechanical
spaces, but only use the techniques to represent
classical noncommutative spaces.

⋄ With the above in mind let us consider a scalar field
theory in NC (Rd) space with the Lagrangian (density)

L∗ =
1

2
∂µΦ ∗ ∂µΦ −

1

2
m2Φ ∗ Φ −

λ

4!
Φ ∗ Φ ∗ Φ ∗ Φ ,

⋄ We assume noncommutativity is restricted to
space-space coordinates.
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QFT in Moyal....

⋄⋄ The Feynmann diagrams and the conventional rules
are:

p

: i

p2
m

2

⋄ and

: λ

⋄ One loop propagator with the conventional rules of
QFT comes from the following diagrams.

PLANAR NONPLANAR
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QFT in Moyal....
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QFT in Moyal....

⋄ The above diagrams contribute to:

I planar =
λ

(2π)4

∫

d4k
1

k2 + m2
,

⋄ and

I nonplanar =
λ

(2π)4

∫

d4k
1

k2 + m2
ei p·θ·k

⋄ Planar diagram is quadratically divergent and requires
cut-off to make it finite. The nonplanar diagram is finite
with an effective cut-off: Λ2

eff = 1
1

Λ2
+p·θ2·p Ultraviolet

divergence is restored in nonplanar diagram either at
θ → 0 or in the infrared limit p → 0. This leads to well
known IR/UV mixing.
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QFT in Moyal space...

⋄ The IR/UV mixing is understood from the following:
The spectral representation for consistency with
perturbative unitarity will modify the dispersion relation
with the appearance of new modes. Unless this is
taken into account the divergence will appear in the
infrared.
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⋄ The IR/UV mixing is understood from the following:
The spectral representation for consistency with
perturbative unitarity will modify the dispersion relation
with the appearance of new modes. Unless this is
taken into account the divergence will appear in the
infrared.

⋄ But it is also troublesome because, Wilsonian
renormalisation cannot be performed. That is
momenta in the UV cannot be consistently integrated
out and absorbed in the parameters of the theory (like
mass and coupling constant).

⋄ It leads to a new phase for the theory known
sometimes as stripe phase or nonuniform phase in
addition to order and disorder phases.
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This is because there is absence of quadratic
divergence.
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⋄ In supersymmetric theories the IR/UV mixing is weak.
This is because there is absence of quadratic
divergence.

⋄ Even otherwise one can regularise the theory in a
nonlocal framework and eliminate the IR/UV mixingtrg,

panero, seckin.

⋄ Since the θµν is not invariant under Lorentz
transformation we lose Poincare symmetry.

⋄ It is also claimed that Unitarity will be violated (again
attributed to IR/UV mixing) in space-time
noncommutativity.

⋄ Gauge transformations get modified to take into
account new multiplication law.
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Gauge theories...

⋄ Conventional Gauge transformations will not close with
the new multiplication map given as star product. For
this one introduces star gauge transformations: Under
star gauge transformation
Aµ(x) −→ g(x) ∗ Aµ(x) ∗ g†(x) − g(x) ∗ ∂µg(x)†.
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⋄ Conventional Gauge transformations will not close with
the new multiplication map given as star product. For
this one introduces star gauge transformations: Under
star gauge transformation
Aµ(x) −→ g(x) ∗ Aµ(x) ∗ g†(x) − g(x) ∗ ∂µg(x)†.

⋄ The NC field strength
Fµν = ∂µAν − ∂νAµ − i(Aµ ∗ Aν − Aν ∗ Aµ)
transforms covariantly viz.,

Fµν −→ g(x) ∗ Fµν ∗ g†(x)

under the star gauge transformation.

⋄ Since gauge transformations are introduced in this way
there is no way to get gauge groups other than U(N).
Infact there is no standard model unless we extend to
include U(1).
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charges cannot be assigned and only ±1 can be given
to the fermions.
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⋄ In addition when you couple to matter, arbitrary
charges cannot be assigned and only ±1 can be given
to the fermions.

⋄ Inspite of the above difficulties lot of papers have been
written by expanding the star products and keeping to
O(θ) terms alone.

⋄ For example the field strength Fµν is expanded as:

Fµν = ∂µAν − ∂νAµ − i[Aµ, Aν ]

−
1

2
θργ(∂ρAµ∂γAν − ∂ρAν∂γAµ) + O(θ2)

⋄ Phenomenological consequences have been worked
out.
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Solitons in Moyal...

⋄ Derrick’s theorem prohibits solitons in dimensions
D > 2. But this can be evaded if there are higher
dervative terms in the action or Hamiltonian. Since
QFT’s in noncommutative spaces have naturally higher
derivatives they also possess solitons which is an
interesting outcome of these theories.
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⋄ Derrick’s theorem prohibits solitons in dimensions
D > 2. But this can be evaded if there are higher
dervative terms in the action or Hamiltonian. Since
QFT’s in noncommutative spaces have naturally higher
derivatives they also possess solitons which is an
interesting outcome of these theories.

⋄ We consider for example D = 2 + 1 with space
directions noncommuting. Consider the action:

S =

∫

d3x ∂µφ ∗ ∂µφ + V (φ)

⋄ The static solitons are obtained by minimising the
energy:

E =

∫

d2x
[

(∂φ)2 + V (φ)
]
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⋄ It is advantangeous to define z = x + iy√
θ

. The energy

becomes

E =

∫

d2x
[

(∂φ)2 + θ V (φ)
]

⋄ In θ −→ ∞ we solve for V ′(φ) = 0. In the commutative
theory we have only φ = constant, but the story is
different in NC theory.

⋄ The solution is given by φ =
∑

i λiPi where λi are

solutions of V (λ) = 0 and P 2
i = Pi are the orthogonal

rank-1 projectors. For example the simplest solution
will use the projector P = | 0〉〈0 |. These solutions are
harmonic oscillator wavefunctions whose width is
determined by the θ parameter.
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⋄ While these solutions are true only in the infinite θ limit
the gradient term in the energy contributes for finite θ.
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⋄ While these solutions are true only in the infinite θ limit
the gradient term in the energy contributes for finite θ.

⋄ The exisitence of solutions can be demonstrated for
large θ by having a series expansion in 1

θ
gopakumar,minwalla,strominger.

⋄ Derrick’s theorem does not hold in gauge theories and
in Higgs gauge field coupling we have the well known
vortex solution. The NC theory is even richer.

⋄ Consider the energy functional:

E =

∫

d2x

(

1

2
F 2 + (Dφ) ∗ (Dφ)† + V (φ)

)

⋄ We have vortex solutions given by Dφ = 0 and
V ′(φ) = 0.
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Solitons in 4 dimensions...

⋄ The exact solutions can be obtained by solution
generating technique: harvey For example exact soln is:

φ = λ(1 − P ); A =
−i

θ

(

√

N + 1

N + 2
− 1

)

a†.
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to x − y planetrg.

17



Solitons in 4 dimensions...

⋄ The exact solutions can be obtained by solution
generating technique: harvey For example exact soln is:

φ = λ(1 − P ); A =
−i

θ

(

√

N + 1

N + 2
− 1

)

a†.

⋄ The above analysis can be extended to any 2d + 1
dimensions. Interestingly we can look at the possibility
in 3 + 1 dimensions where noncommutativity is limited
to x − y planetrg.

⋄ Consider the action:

S =

∫

dtdzd2x

(

(Dφ) ∗ (Dφ)† + λ(φ ∗ φ† − 1)2 +
1

4
F ∗ F

)

.
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Solitons in 4 dimensions...

⋄ we will combine the kink solution along z axis and nc
soliton in the x − y plane. In the θ −→ ∞ we minimise
the energy functional:

E =

∫

dzd2x

(

(Dφ) ∗ (Dφ)† + θλ(φ ∗ φ† − 1)2 +
1

2
(B ∗ B)

)
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1

2
(B ∗ B)

)

⋄ The solution for θ = ∞ and gauge potential zero is:

φ = a(Pφ0(z) + iQ), P 2 = P, Q = 1 − P

where φ0(z) is the kink solution of 1+1 dimensional
theory.
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Solitons in 4 dimensions...

⋄ we will combine the kink solution along z axis and nc
soliton in the x − y plane. In the θ −→ ∞ we minimise
the energy functional:

E =

∫

dzd2x

(

(Dφ) ∗ (Dφ)† + θλ(φ ∗ φ† − 1)2 +
1

2
(B ∗ B)

)

⋄ The solution for θ = ∞ and gauge potential zero is:

φ = a(Pφ0(z) + iQ), P 2 = P, Q = 1 − P

where φ0(z) is the kink solution of 1+1 dimensional
theory.

⋄ The above solution leads to soliton mass characterised
by the rank of the projector P . It has the correct
behaviour at ∞. One can order by order in 1

θ solve for
the solutions for finite and large θ
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Solitons in 4 dimensions...

⋄ We can also get vortex like solution combining the 2+1
D vortex solution and the kink solution. To demonstrate
this solution: let us define: A = A + ∂. Then
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Solitons in 4 dimensions...

⋄ We can also get vortex like solution combining the 2+1
D vortex solution and the kink solution. To demonstrate
this solution: let us define: A = A + ∂. Then

⋄

A = S a S†; φ = 2P − 1

⋄ where
S† S = I; S S† = I − P

⋄ For the case of P = |0〉〈0| we have

S =
∑

|n〉〈n + 1|

19



Symmetries in NC theories...

⋄ Since in Moyal plane in 3 + 1D the algebra is not
homomorphic under Poincare group it will break the
symmetry to a subgroup which leaves θµν invariant.
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⋄ Since in Moyal plane in 3 + 1D the algebra is not
homomorphic under Poincare group it will break the
symmetry to a subgroup which leaves θµν invariant.

⋄ This is SO(1, 1) ⊗ SO(2) and the conventional
quantisation has this feature.

⋄ More important when θ0i 6= 0 it is shown that
perturbative Unitarity will be violated. The reason is
the star product will bring higher time derivatives and
this will have new modes of solutions. This can be
avoided for light like noncommutativity! i.e θµνθ

µν = 0.

⋄ But there is a way out for preserving Poincare
symmetry in NC theories. Also Unitarity issue is more
subtle than the above arguments.
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Fuzzy torus, sphere,...

⋄ Fuzzy torus and sphere are more interesting examples
of NC spaces with lot of applications. They appear
naturally if we look for alternatives to lattice
regularisation.
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of NC spaces with lot of applications. They appear
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Y with the condition:
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These appear naturally in certain string theory
compactifications, showing possibly the consistancy of
these backgrounds.

21



Fuzzy torus, sphere,...

⋄ Fuzzy torus and sphere are more interesting examples
of NC spaces with lot of applications. They appear
naturally if we look for alternatives to lattice
regularisation.

⋄ Fuzzy torus is defined by the unitary elements X and
Y with the condition:

X Y = eiθ Y X

These appear naturally in certain string theory
compactifications, showing possibly the consistancy of
these backgrounds.

⋄ The algebra has finite dimensional representations if θ

is a root of unity. But for irrational multiples of 2π
representations are infinite dimensional. For QFT’s on
torus one can consider these tori as regularisation.
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Fuzzy torus, sphere,...

⋄ One can obtain commutatative algebra by appropriate
limiting procedure. In addition the algebra with θ and 1

θ
are related by duality.
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⋄ One can obtain commutatative algebra by appropriate
limiting procedure. In addition the algebra with θ and 1

θ
are related by duality.

⋄ Another interesting algebra is discretisation for S2

obtained from the condition:
∑

x2
i = R2.

Commutative algebra of functions on S2 are obtained
by homogeneous polynomials of xi with the above
condition. Fuzzy spheres S2

F are obtained by:

[ xi, xj ] = iθ ǫijkxk

and the condition as above.
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Fuzzy torus, sphere,...

⋄ Using the representation theory of SU(2) one can
consider field theory on S2

F as regularised version of
continuum theory. This has the major advantage of
consitently having full SU(2) symmetry at the
regularised level. In addition it nicely avoids Fermion
doubling problem by naturally incorporating
Ginsparg-Wilson mechanism.
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demonstration of existance of three phases, viz.,
ordered, disordered and nonuniform phases have been
done.

23



Fuzzy torus, sphere,...

⋄ Using the representation theory of SU(2) one can
consider field theory on S2

F as regularised version of
continuum theory. This has the major advantage of
consitently having full SU(2) symmetry at the
regularised level. In addition it nicely avoids Fermion
doubling problem by naturally incorporating
Ginsparg-Wilson mechanism.

⋄ Fuzzy spheres have nice limits to sphere, plane and
Moyal plane. Analytical and numerical studies have
been done extensively on these and explicite
demonstration of existance of three phases, viz.,
ordered, disordered and nonuniform phases have been
done.

⋄ In addition QFT’s on S2
F ⊗ R1 exhibit solitons toovaidya.
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Fuzzy sphere,...

⋄ The action for scalar field on Fuzzy sphere S2
F is

S(Φ) =
4π

N
Tr
[

Φ [Li, [Li,Φ]] + R2
(

rΦ2 + λΦ4
)]

.

24



Fuzzy sphere,...

⋄ The action for scalar field on Fuzzy sphere S2
F is

S(Φ) =
4π

N
Tr
[

Φ [Li, [Li,Φ]] + R2
(

rΦ2 + λΦ4
)]

.

⋄ The above is a matrix model and is amenable to
simulations easily. The fields on fuzzy spaces are
explicitly finite and do not have the IR/UV mixing
vaidya,madore. But there is an anomaly in the finite case
which reveals itself as generating the IR/UV mixing in
the continuum.
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⋄ The action for scalar field on Fuzzy sphere S2
F is

S(Φ) =
4π

N
Tr
[

Φ [Li, [Li,Φ]] + R2
(

rΦ2 + λΦ4
)]

.

⋄ The above is a matrix model and is amenable to
simulations easily. The fields on fuzzy spaces are
explicitly finite and do not have the IR/UV mixing
vaidya,madore. But there is an anomaly in the finite case
which reveals itself as generating the IR/UV mixing in
the continuum.

⋄ There is lot of confusion about taking the limit of
continuum in these models and it has been pointed out
various possibilities do exist.
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QFT on Fuzzy sphere-Phase structure..

⋄ We have the conventional ordered and disordered
phases characterized by 〈Φ〉 ∝ I or 0.
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QFT on Fuzzy sphere-Phase structure..

⋄ We have the conventional ordered and disordered
phases characterized by 〈Φ〉 ∝ I or 0.

⋄ We find appearance of new phase called nonuniform
phase where 〈TrΦ〉 = 0.

⋄ The phase diagram is shown belowcrdas,digal,trg.

λ
R

2

rR
2

Disorder

Nonuniform

Order

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0  10  20  30  40  50  60  70  80

25



Fuzzy CP 2

⋄ The fuzzy sphere can be generalised to other coadjoint
orbits like CP 2 Infact any CPn can be fuzzified using
the naturally defined symplectic structure of these
spaces.
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⋄ These fuzzy spaces have all been put to use for
characterising quantum hall droplets as well as higher
dimensional QH statesnair etal.,.
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Fuzzy CP 2

⋄ The fuzzy sphere can be generalised to other coadjoint
orbits like CP 2 Infact any CPn can be fuzzified using
the naturally defined symplectic structure of these
spaces.

⋄ These fuzzy spaces have all been put to use for
characterising quantum hall droplets as well as higher
dimensional QH statesnair etal.,.

⋄ CP 1 Sigma models on NC space have been shown to
have interesting topological solitonsbal,immirzi,trg,hari.
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