F150: Direct or Tensor Matrix Product

Author(s): K.S. Kölbig Library: MATHLIB
Submitter: Submitted: 15.09.1978
Language: Fortran Revised:

Subroutine subprogram MXDIPR computes the direct (sometimes called tensor, or Kronecker) product tex2html_wrap_inline162 of two matrices A and B. Let tex2html_wrap_inline164 ; tex2html_wrap_inline166 ; then tex2html_wrap_inline168 with tex2html_wrap_inline170 . C has tex2html_wrap_inline172 rows and tex2html_wrap_inline174 columns. If, in particular, A and B are square matrices, C is also square.

Structure:

SUBROUTINE subprogram
User Entry Names: MXDIPR

Usage:

    CALL MXDIPR(A,B,C,IAD,JBD,IJD,IA,KA,JB,LB)
A,B
(REAL) Matrices A and B.
C
(REAL) On exit, C contains the direct product tex2html_wrap_inline176 .
IAD
(INTEGER) First dimension of A.
JBD
(INTEGER) First dimension of B.
IJD
(INTEGER) First dimension of C.
IA,KA
(INTEGER) Number of rows, columns of A.
JB,LB
(INTEGER) Number of rows, columns of B.

Restrictions:

A, B, C must not overlap.

Error handling:

If IA or KA or JB or LB are equal to zero, the subprogram acts as do-nothing.

Examples:

    DIMENSION A(2,2),B(2,2),C(4,4)
    ...
    CALL MXDIPR(A,B,C,2,2,4,2,2,2,2)
assuming

displaymath178

would set

displaymath180

References:

  1. E.P. Wigner, Group Theory, (Academic Press, New York 1959) 17
  2. W.I. Smirnow, Lehrgang der höheren Mathematik, Vol. III.1, (Deutscher Verlag der Wissenschaften, Berlin 1954) 221
tex2html_wrap_inline182

Michel Goossens Wed Jun 5 05:46:44 METDST 1996