next up previous index
Next: PHYS451 Simulation of Up: Method Previous: Method

Parameterisation of energy loss and total cross-section

Instead of using the explicit formula (gif) and (gif), we have chosen to parameterise directly Elosspair(Z,T, Ec ) and σ(Z,T,Ec) as:
σ(Z,T,Ec) = Z [Z+ ξσ(1+ γlnZ)][ln{EmaxE}]αFσ(Z,X,Y)

Elosspair(Z,T,Ec) = Z [Z+ ξl(1+ δlnZ)]E[ {Ec- EcminE}]βFl(Z,X,Y)

where ξσ,l , α , β , γ and δ

are parameters obtained by a fitting procedure and Ecmin= E&sp;vmin= 4 me and Emax= E&sp;vmax

The functions Fi (Z,X,Y) (i=σ, l ) have the form: Fi(Z,X,Y) = Fi0(X,Y)+ZFi1(X,Y)

where Fij(X,Y) denotes a function constructed from two polynomials Fij(X,Y) =
Pijneg(X,Y) if Y ≤0

Pijpos(X,Y) if Y > 0

.

and Pijneg , Pijpos fulfil the conditions:

Pijneg(X,Y)Y=0= Pijpos(X,Y)Y=0&sp;. {PijnegY }|Y=0=. {PijposY }|Y=0

The detailed form of the Pij polynomials is:
Pi0neg(X,Y) = (C1+C2X+...+C6X5)+(C7+C8X+...+C12X5)Y

+ (C13+C14X+...+C18X5)Y2+...+(C31+...+C36X5)Y5

Pi0pos(X,Y) = (C1+C2X+...+C6X5)+(C7+C8X+...+C12X5)Y

+ (C37+C38X+...+C42X5)Y2+...+(C55+...+C60X5)Y5

Pi1neg(X,Y) = (C61+C62X+...+C65X4)+(C66+C67X+...+C70X4)Y

+ (C71+C72X+...+C75X4)Y2+...+(C81+...+C85X4)Y4

Pi1pos(X,Y) = (C61+C62X+...+C65X4)+(C66+C67X+...+C70X4)Y

+ (C86+C87X+...+C90X4)Y2+...+(C96+...+C100X4)Y4

with

X = ln{Emμ}&sp;Y = ln{EcvjE}&sp;j = σ, l

where vσ,l are additional parameters of the fit. By a numerical (twofold) integration of the formulae (gif) and (gif) above, we have calculated 1800 data points in the range Z = 1, 6, 13, 26, 50, 82, 92 and the energy ranges 1GeV ≤T ≤ 10 TeV and 4m ≤Ec≤T

and performed a least-squares fit to determine the parameters. The fitted values of the parameters are in the DATA statements in the functions GPRSGM and GPRELM, which compute the formulae (gif) and (gif) respectively. The accuracy of the fit is:

The function GPRELM contains a second formula to calculate the total energy lost by the muon due to direct -production used when Ec≥Emax= E-0.75 e mμZ1/3 . This formula describes the total energy loss with an error less than 1%:
Elosspair(Z,T) = Elosspair(Z,T,Ec=Emax)

= Z(Z+1) Emax[d1+(d2X+d3Y)+(d4X2+d5XY+d6Y2)+

+ ...+(d22X6+d23X5Y+...+d28Y6)]

where X=ln(E/mμ) and Y=Z1/3 . The fitted parameters di can be found in the DATA statement in the function GPRELM.

PHYS451



next up previous index
Next: PHYS451 Simulation of Up: Method Previous: Method


Janne Saarela
Mon Apr 3 12:46:29 METDST 1995